
INTRODUCTION

A programming language is designed to help certain kinds of data process consisting

of numbers, characters and strings to provide useful output known as information. The task of

processing of data is accomplished by executing a sequence of precise instructions called

program.

CHARACTER SET

C characters are grouped into the following categories.

1. Letters

2. Digits

3. Special Characters

4. White Spaces

Note: The compiler ignores white spaces unless they are a part of a string constant.

Digits All decimal digits 0…..9

Letters

Uppercase A….Z

Lowercase a…..z

KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings

and these meanings cannot be changed. Eg: auto, break, char, void etc., Identifiers refer to the

names of variables, functions and arrays. They are user-defined names and consist of a sequence

of letters and digits, with a letter as a first character. Both uppercase and lowercase letters are

permitted. The underscore character is also permitted in identifiers.

Constants

Integer Constants

An integer constant refers to a sequence of digits, There are three types integers,

namely, decimal, octal, and hexa decimal.

Decimal Constant

Eg:123,-321 etc.,

Note: Embedded spaces, commas and non-digit characters are not permitted between digits.

Eg: 1) 15 750 2)$1000

Octal Constant

An octal integer constant consists of any combination of digits from the set 0 through 7, with a

leading 0.

Eg: 1) 037 2) 0435

Hexadecimal Constant

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also

include alphabets A through F or a through f. Eg: 1) 0X2 2) 0x9F 3) 0Xbcd

Real Constants

Certain quantities that vary continuously, such as distances, heights etc., are represented by

numbers containing functional parts like 17.548.Such numbers are called real (or floating

point)constants. Eg:0.0083,-0.75 etc.,A real number may also be expressed in exponential or

scientific notation. Eg:215.65 may be written as 2.1565e2

Single Character Constants

A single character constants contains a single character enclosed within a pair of single quote

marks. Eg: ’5’ ‘X’ ‘;’

 String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be

letters, numbers, special characters and blank space. Eg:”Hello!” “1987” “?….!”

Backslash Character Constants

C supports special backslash character constants that are used in output functions. These

character combinations are known as escape sequences.

VARIABLES

Definition:

A variable is a data name that may be used to store a data value. A variable may take different

values at different times of execution and may be chosen by the programmer in a meaningful

way. It may consist of letters, digits and underscore character.

Eg: 1) Average 2) Height

Rules for defining variables

v They must begin with a letter. Some systems permit underscore as the first character.

v ANSI standard recognizes a length of 31 characters. However, the length should not

be normally more than eight characters.

v Uppercase and lowercase are significant.

v The variable name should not be a keyword.

v White space is not allowed.

DATA TYPES

ANSI C supports four classes of data types.

1. Primary or Fundamental data types.

2. User-defined data types.

3. Derived data types.

4. Empty data set.

PRIMARY DATA TYPES

DECLARATION OF VARIABLES

The syntax is

 Data-type v1,v2…..vn;

Eg:1.int count;

 2.double ratio, total;

User-defined type declaration

C allows user to define an identifier that would represent an existing int data type.

The general form is

typedef type identifier;

Eg: 1) typedef int units;

 2) typedef float marks;

Another user defined data types is enumerated data type which can be used to declare

variables that can have one of the values enclosed within the braces.

enum identifier {value1,value2,……valuen};

Declaration of storage class

Variables in C can have not only data type but also storage class that provides information about

their locality and visibility.

/*Example of storage class*/

int m;

main()

{

int i;

float bal;

……

……

function1();

}

function1()

{

int i;

float sum;

……

……

}

Here the variable m is called the global variable. It can be used in all the functions in

the program. The variables bal, sum and i are called local variables. Local variables are visible

and meaningful only inside the function in which they are declared. There are four storage class

specifiers, namely, auto, static, register and extern.

ASSIGNING VALUES TO VARIABLES

The syntax is

Eg:1) int a=20;

 2) bal=75.84;

 3) yes=’x’;

C permits multiple assignments in one line.

Example:

 initial_value=0;final_value=100;

Declaring a variable as constant

Eg: 1) const int class_size=40;

This tells the compiler that the value of the int variable class_size must not be modified by the

program.

Declaring a variable as volatile

By declaring a variable as volatile, its value may be changed at any time by some external

source.

Eg:1) volatile int date;

READING DATA FROM KEYWORD

Another way of giving values to variables is to input data through keyboard using the scanf

function.

The ampersand symbol & before each variable name is an operator that specifies the variable

name’s address.

Eg: 1) scanf(“%d”,&number);

DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly in a

number of places in the program. One example of such a constant is 3.142, representing the

value of the mathematical constant “pi”.We face two problems in the subsequent use of such

programs.

1. Problem in modification of the programs.

2. Problem in understanding the program.

A constant is defined as follows:

Eg: 1) #define pi 3.1415

2) #define pass_mark 50

The following rules apply to a #define statement which define a symbolic constant

 Symbolic names have the same form as variable names.

 No blank space between the sign ‘#’ and the word define is permitted

 ‘#’ must be the first character in the line.

 A blank space is required between #define and symbolic name and between the symbolic name

and the constant.

 #define statements must not end with the semicolon.

 After definition, the symbolic name should not be assigned any other value within the program

by using an assignment statement.

v Symbolic names are NOT declared for data types. Their data types depend on the type of

constant.

v #define statements may appear anywhere in the program but before it is referenced in the

program.

OPERATORS

· arithmetic operators

· relational operators

· logical, assignment operators

· increment, decrement, conditional operators

· bitwise and special operators.

OPERATORS OF C

C supports a rich set of operators. Operators are used in programs to manipulate data and

variables. They usually form a part of the mathematical of logical expressions. C operators are

classified into a number of categories.

They include:

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and Decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

ARITHMETIC OPERATORS

The operators are

+ (Addition)

- (Subtraction)

* (Multiplication)

/ (Division)

% (Modulo division)

Eg: 1) a-b 2) a+b 3) a*b 4) p%q

The modulo division produces the remainder of an integer division.

The modulo division operator cannot be used on floating point data.

Note: C does not have any operator for exponentiation.

Integer Arithmetic

When both the operands in a single arithmetic expression are integers, the expression

is called an integer expression , and the operation is called integer arithmetic. During modulo

division the sign of the result is always the sign of the first operand. That is

-14 % 3 = -2

-14 % -3 = -2

14 % -3 = 2

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. If x and y are

floats then we will have:

1) x = 6.0 / 7.0 = 0.857143

2) y = 1.0 / 3.0 = 0.333333

The operator % cannot be used with real operands.

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode

arithmetic expression and its result is always a real number.

Eg: 1) 15 / 10.0 = 1.5

RELATIONAL OPERATORS

Comparisons can be done with the help of relational operators. The expression containing a

relational operator is termed as a relational expression. The value of a relational expression is

either one or zero.

1) < (is less than)

2) <= (is less than or equal to)

3)> (is greater than)

4) >= (is greater than or equal to)

5) = = (is equal to)

6) != (is not equal to)

LOGICAL OPERATORS

C has the following three logical operators.

&& (logical AND)

|| (logical OR)

! (logical NOT)

Eg: 1) if(age>55 && sal<1000)

2) if(number<0 || number>100)

ASSIGNMENT OPERATORS

The usual assignment operator is ‘=’.In addition, C has a set of ‘shorthand’

assignment operators of the form, v op = exp;

Eg:1.x += y+1;

This is same as the statement

x=x+(y+1);

Shorthand Assignment Operators

INCREMENT AND DECREMENT OPERATORS

C has two very useful operators that are not generally found in other languages. These

are the increment and decrement operator:

++ and --

The operator ++ adds 1 to the operands while – subtracts 1.It takes the following

form:

++m; or m++

--m; or m—

CONDITIONAL OPERATOR

A ternary operator pair “?:” is available in C to construct conditional expression of the

form:

exp1 ? exp2 : exp3;

Here exp1 is evaluated first. If it is true then the expression exp2 is evaluated and becomes the

value of the expression. If exp1 is false then exp3 is evaluated and its value becomes the value of

the expression.

Eg:1) if(a>b)

x = a;

else

x = b;

SPECIAL OPERATORS

C supports some special operators such as

Comma operator

Size of operator

Pointer operators(& and *) and

Member selection operators(. and ->)

The Comma Operator

The comma operator can be used to link the related expressions together. A commalinked

list of expressions are evaluated left to right and the value of right-most expression is the value

of the combined expression.

Eg: value = (x = 10, y = 5, x + y);

This statement first assigns the value 10 to x, then assigns 5 to y, and finally assigns

15(i.e, 10+5) to value.

The Size of Operator

The size of is a compiler time operator and, when used with an operand, it returns the

number of bytes the operand occupies.

Eg: 1) m = sizeof(sum);

2) n = sizeof(long int)

3) k = sizeof(235L)

EXPRESSIONS

identify expressions
• understand the precedence of arithmetic operators
• know how type conversion works
• get knowledge about mathematical functions of C
• mange input and output operations of C

EXPRESSIONS
The combination of operators and operands is said to be an expression.

ARITHMETIC EXPRESSIONS
An arithmetic expression is a combination of variables, constants, and operators
arranged as per the syntax of the language.
Eg 1) a = x + y;
EVALUATION OF EXPRESSIONS
Expressions are evaluated using an assignment statement of the form
variable = expression;
Eg:1) x = a * b – c;
2) y = b / c * a;

PRECEDENCE OF ARITHMETIC OPERATORS
An arithmetic expression without parenthesis will be evaluated from left to right
using the rule of precedence of operators. There are two distinct priority levels of arithmetic
operators in C.
High priority * / %
Low priority + -
Program
/*Evaluation of expressions*/
main()
{
float a, b, c, y, x, z;
a = 9;
b = 12;
c = 3;
x = a – b / 3 + c * 2 – 1;
y = a – b / (3 + c) * (2 – 1);
z = a – (b / (3 + c) * 2) – 1;
printf(“x = %f \n”,x);
printf(“y = %f \n”,y);
printf(“z = %f \n”,z);
}
OUTPUT
x = 10.000000
y = 7.000000
z = 4.000000

Mathematical Functions

