

T. Y. B. Sc.
(Computer Science)

Laboratory Course II

(Java Programming - CS351)

Semester I

Name ________________________________ Roll No. _______

College _______________________________ Division _______

Academic Year _____________

ADVISORS:
PROF. A. G. GANGARDE (CHAIRMAN, BOS-COMP. SC.)

CHAIRPERSON:
PROF. MRS. CHITRA NAGARKAR

CO-ORDINATOR:
PROF. MS. POONAM PONDE

AUTHORS:

 Ms. Poonam Ponde
 Ms. Seema Jawale
 Ms. Jayshri Patil
 Ms. Kalpana Joshi
 Ms. Ranjana Shevkar

BOARD OF STUDY (COMPUTER SCIENCE) MEMBERS:
1. DR.VILAS KHARAT
2. MR. S. S. DESHMUKH
3. MRS. CHITRA NAGARKAR
4. MR. U. S. SURVE
5. MR. M. N. SHELAR
6. MR. V. R. WANI
7. MR. PRASHANT MULE
8. MR. S. N. SHINDE
9. MR. R. VENKATESH

ABOUT THE WORK BOOK

• OBJECTIVES OF THIS BOOK

This lab-book is intended to be used by T.Y.B.Sc(Computer Science) students
for Laboratory course – II (Java programming), Semester I.
The objectives of this book are

a. Covers the complete scope of the syllabus.
b. Bringing uniformity in the way course is conducted across different colleges.
c. Continuous assessment of the students.
d. Providing ready references for students while working in the lab.

• How to use this book?

This book is mandatory for the completion of the laboratory course. It is a
Measure of the performance of the student in the laboratory for the entire
Duration of the course.

• Instructions to the students

1. Students should carry this book during practical sessions.
2. Students should maintain a separate journal for the source code and outputs.
3. Student should read the topics mentioned in Reading section of this book

before coming for the practical session.
4. Students should solve those exercises which are selected by Practical in-

charge as a part of journal activity. However, students are free to solve
additional exercises for more practice.

5. Each assignment will be assessed on a scale of 0 to 5 as indicated below.
 i) Not done 0
 ii) Incomplete 1
 iii) Late Complete 2
 iv) Needs improvement 3
 v) Complete 4
 vi) Well Done 5

• Difficulty Levels

Self Activity : Students should solve these exercises for practice only.
SET A - Easy : All exercises are compulsory.
SET B - Medium : At least one exercise is mandatory.
SET C - Difficult : Not Compulsory.

• Instruction to the Instructors

1) Choose appropriate problems to be solved by student by ticking box �
2) Make sure that students follow the instruction as given above.
3) After a student completes a specific set, the instructor has to verify the outputs and sign
in the space provided after the activity.
4) Evaluate each assignment on a scale of 5 as specified above by ticking appropriate box.
5) The value should also be entered on assignment completion page of the respective Lab
course.

 Assignment Completion Sheet

Sr.
No

Assignment Name Marks

1 Java Tools

2 Array of Objects, Packages

3 Inheritance and Interfaces

4 Exception Handling and Assertions

5 I/O and File Handling

6 GUI using Swing

7 Event Handling

8 Applets

Total:

 Signature of Incharge:

Examiner I :

Examiner II :

Date:

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 1]

Assignment 1: Java Tools Start Date / /

Objectives

• Introduction to the java environment
• Use of java tools like java, javac, jdb and javadoc
• Defining simple classes and creating objects.

Reading

You should read the following topics before starting this exercise

1. Creating, compiling and running a java program.
2. The java virtual machine.
3. Java tools like javac, java, javadoc, javap and jdb.
4. Java keywords
5. Syntax of class.

Ready Reference
Java Tools

(1) javac:- javac is the java compiler which compiles .java file into .class file(i.e.
bytecode). If the program has syntax errors, javac reports them. If the program is
error-free, the output of this command is one or more .class files.
Syntax:
 javac fileName.java

(2) java:- This command starts Java runtime environment, loads the specified .class
file and executes the main method.
Syntax:
 java fileName

(3) javadoc:- javadoc is a utility for generating HTML documentation directly from
comments written in Java source code.Javadoc comments have a special form but
seems like an ordinary multiline comment to the compiler.
Syntax of the comment:

/**
 A sample doc comment
*/

Syntax:
javadoc [options] [packagenames] [sourcefiles] [@files]
Where,

packagenames: A series of names of packages, separated by spaces
sourcefiles: A series of source file names, separated by spaces
@files: One or more files that contain packagenames and sourcefiles in any
order, one name per line.

Javadoc creates the HTML documentation on the basis of the javadoc tags used in the
source code files. These tags are described in the table below:

Tag Syntax Description
@see @see reference Allows you to refer to the documentation in other

classes.
 @author @author author-information Author-information contains author name, and / or

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 2]

 author email address or any other appropriate
information.

@version @version version-information Specifies the version of the program
@since @since version This tag allows you to indicate the version of this

code that began using a particular feature.
@param @param name description This is used for method documentation. Here, name is

the identifier in the method parameter list, and
description is text that can describes the parameter.

@return @return description This describes the return type of a method.
@throws @throws classname description

This is used when we handle Exceptions. It describes
a particular type of exception that can be thrown from
the method call.

@deprecated @deprecated description The deprecated tag suggests that this feature is no
longer supported. A method that is marked
@deprecated causes the compiler to issue a warning if
it is used.

(4) jdb: -
jdb helps you find and fix bugs in Java language programs. This debugger has limited
functionality.
Syntax:
jdb [options] [class] [arguments]
options : Command-line options.
class : Name of the class to begin debugging.
arguments : Arguments passed to the main() method of class.

After starting the debugger, the jdb commands can be executed. The important jdb
commands are:

i. help, or?: The most important jdb command, help displays the list of
recognized commands with a brief description.

ii. run: After starting jdb, and setting any necessary breakpoints, you can use
this command to start the execution the debugged application.

iii. cont: Continues execution of the debugged application after a breakpoint,
exception, or step.

iv. print: Displays Java objects and primitive values. For variables or fields of
primitive types, the actual value is printed. For objects, a short description is
printed.
Examples:
print MyClass.myStaticField
print myObj.myInstanceField
print i + j + k
print myObj.myMethod()//if myMethod returns non-null

v. dump: For primitive values, this command is identical to print. For
objects, it prints the current value of each field defined in the object. Static
and instance fields are included.

vi. next: The next command advances execution to the next line in the current
stack frame.

vii. step: The step commands advances execution to the next line whether it is
in the current stack frame or a called method.

Breakpoints can be set in jdb at line numbers, constructors, beginning of a method.
Example:
stop at MyClass:10 //sets breakpoint at instruction at line 10 of the source file
containing MyClass
stop in MyClass.display // sets breakpoint at beginning of method display in MyClass
stop in MyClass.<init> //sets breakpoint at default constructor of MyClass

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 3]

stop in MyClass.<init(int)> //sets breakpoint at parameterized constructor with int
as parameter

(4) javap: -
The javap tool allows you to query any class and find out its list of methods and
constants.

javap [options] class
Example: javap java.lang.String
It is a disassembler which allows the bytecodes of a class file to be viewed when used
with a classname and the –c option.

javap -c class

Setting CLASSPATH
The classpath is the path that the Java runtime environment searches for classes and other
resource files. The class path can be set using either the –classpath option or by setting
the CLASSPATH environment variable.
The -classpath option is preferred because you can set it individually for each application
without affecting other applications and without other applications modifying its value.
The default value of the class path is ".", meaning that only the current directory is
searched. Specifying either the CLASSPATH variable or the -cp command line switch
overrides this value.

javac –classpath \myProg\myPackage; \myProg\otherclasses

Or
CLASSPATH= classpath1;classpath2...
export CLASSPATH
Example
CLASSPATH=.:/usr/local/classes.jar:/home/user1/myclasses
export CLASSPATH
To retain the existing classpath setting, use $CLASSPATH in the new list.
export CLASSPATH=$CLASSPATH:/home/user1/myclasses

Self Activity

1. Sample program
/* Program to generate documentation*/
/**
 This program demonstrates javadoc
 @author ABC
 @version 1
*/
public class MyClass {
int num;
 /**
 Default constructor
 */
 public MyClass() {
 num=0;
 }
 /**
 Member function
 @param x Represents the new value of num
 @return void No return value
 */
 public void assignValue(int x) {

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 4]

 num = x;
 }

Type the following command: javadoc MyClass.java
See the HTML documentation file MyClass.html

2. Sample program
/* Program to define a class and an object of the class* /
public class MyClass {
int num;
public MyClass() {
 num=0;
 }
public MyClass(int num) {
 this.num = num;
 }
 public static void main(String[] args)
 {
 MyClass m1 = new MyClass();
 int n = Integer.parseInt(args[0]);
 MyClass m2 = new MyClass(n);
 System.out.println(m1);
 System.out.println(m2);
 }
}
Compile the program using
javac MyClass.java
Execute the program using
java MyClass 10

Lab Assignments

SET A

� 1. Using javap, view the methods of the following classes from the lang package:
Object, String and Math.

� 2. Compile sample program 2. Type the following command and view the bytecodes.
javap –c MyClass

� 3. Compile sample program 2. Execute it using the following command. This gives a
list of the classes loaded by the JVM.
java –verbose MyClass

Signature of the instructor

Date / /

SET B

� 1. Define a class MyNumber having one private int data member. Write a default
constructor to initialize it to 0 and another constructor to initialize it to a value (Use this).
Write methods isNegative, isPositive, isZero, isOdd, isEven. Create an object in main.
Use command line arguments to pass a value to the object (Hint : convert string argument

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 5]

to integer) and perform the above tests. Provide javadoc comments for all constructors
and methods and generate the html help file.

� 2. Save the sample program 2 in a folder named javaprgs. Set the CLASSPATH to this
folder. Compile the program and use jdb to trace the program execution. Type the
following commands and see the execution.
jdb MyClass 10
help
stop in MyClass.main
run
next
next
“
Continue typing next till the program ends.
Repeat the above process and type command step instead of next. Observe the output.

Signature of the instructor Date
/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 6]

Assignment 2: Array of Objects, Packages Start Date / /

Objectives

• Defining a class.
• Creating an array of objects.
• Creating a package. (Using package command)
• Using packages (Using import command)

Reading

You should read the following topics before starting this exercise:
1. Structure of a class in java.
2. Declaring class reference.
3. Creating an object using new.
4. Declaring an array of references.
5. Creating an array of objects.
6. Syntax of the package command.
7. Syntax of the import command.

Ready Reference

General form of a class
class classname {

type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;

type methodname1(parameter-list) {

// body of method
}
type methodname2(parameter-list) {

// body of methodTHE JAVA LANGUAGE
}
// ...
type methodnameN(parameter-list) {

// body of method
}

}
Example
class Student{
 private int rollNumber; private String name;
 Student() //constructor
 {
 rollNumber = 0; name = null;
 }
 Student(int rollNumber, String name)
 {
 this.rollNumber = rollNumber; this.name = name;
 }
 void display()
 {
 System.out.println(“Roll number = “ + rollNumber);
 System.out.println(“Name = “ + name);
 }
}
Static fields and methods:

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 7]

Static fields are class variables which have the “static” modifier. They don’t belong to the
instance but belong to the class. Static methods are used to access static members of a
class.
To access a static member, use the following syntax:
ClassName.staticMember
ClassName.staticMethod(arguments)

Creating objects:
ClassName referenceName;
referenceName = new ClassName();
 OR
ClassName referenceName = new ClassName();
Example:
Student s1 = new Student();
Student s2 = new Student(10,”ABC”);

Overriding toString method of the Object class:

The toString method gives a string representation of an object. To over-ride the
toString method for a user defined class, use the syntax:
public String toString()
{
 // return a string representation of the object
}
Example
class Student{
 private int rollNumber;
 private String name;
 public String toString() {
 return “Roll Number = “ + rollNumber + “Name = “+name;
 }
}
 This example includes the concept of Static data member, overloaded constructor and
this keyword, toString() function.
class Employee
{
 static int count;
 int empID;
 String ename;
 public Employee() {
 this("unknown"); //invokes parameterized constructor
 }
 public Employee(String n) {
 count++; ename=n; empID=count;
 }
 public String toString(){
 return "empID : "+empID+"\nempName :"+ename;
 }
 public static void main(String s[])
 {
 Employee e = new Employee();
 System.out.println(e);
 Employee e1 = new Employee("ABC");
 System.out.println(e1);
 }
}//end of class Employee

Declaring an array of references:
ClassName[] arrayName = new ClassName[size];
Example:
Student[] studentArray = new Student[10];

Creating an array of objects:

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 8]

for each reference in the array
{
 Create an object using new
}
Example:
Student[] studentArray = new Student[10];
for(i=0; i<10; i++)
 studentArray[i] = new Student();

Command line arguments
We can pass information to main from the command line using command line arguments.
These are stored in an array of Strings which is passed to main as an argument.
public static void main(String[] args)

Here, args is the name of the array. The total number of arguments can be obtained using
args.length . To access each argument, use a for loop as shown:
for(int i=0; i<args.length ; i++)
 System.out.println(“Argument ”+ i + “ = “ + args[i]);
To convert the argument from String to any type, use Wrapper classes.

Method Purpose
Byte.parseByte Returns byte equivalent of a String
Short.parseShort Returns the short equivalent of a String
Integer.parseInt Returns the int equivalent of a String
Long.parseLong Returns the long equivalent of a String
Float.parseFloat Returns the float equivalent of a String
Double.parseDouble Returns the double equivalent of a String

Simple I/O
To read a String from the console, use the following code:
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
 Or
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

For this, you will have write the following statement at the beginning:
import java.io.*;

Packages:
A package is a collection of related classes and interfaces. It provides a mechanism for
compartmentalizing classes. The Java API is organized as a collection of several
predefined packages. The java.lang package is the default package included in all java
programs. The commonly used packages are:
java.lang Language support classes such as Math, Thread, String
java.util Utility classes such as LinkedList, Vector , Date.
java.io Input/Output classes
java.awt For graphical user interfaces and event handling.
javax.swing For graphical user interfaces
java.net For networking
java.applet For creating applets.

Creating a package

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 9]

To create a user defined package, the package statement should be written in the source
code file. This statement should be written as the first line of the program. Save the
program in a directory of the same name as the package.
package packageName;

Accessing a package
To access classes from a package, use the import statement.
import packageName.*; //imports all classes
import packageName.className; //imports specified class

Note that the package can have a hierarchy of subpackages. In that case, the package
name should be qualified using its parent packages. Example: project.sourcecode.java
Here, the package named project contains one subpackage named sourcecode which
contains a subpackage named java.

Access Rules
The access rules for members of a class are given in the table below.

Accessible to public protected none private
Same class Yes Yes Yes Yes
Class in same package Yes Yes Yes No
Subclass (in any package) Yes Yes No No
Non subclass in Other package Yes No No No

Self Activity
Compile and Execute the following sample programs.
1. Sample program to create objects , demonstrate use of toString and static
keyword.
class Student {
 int rollNumber; String name;
 static String classTeacher;
 Student(int r, String n) {
 rollNumber = r; name = n;
 }
 static void assignTeacher(String name) {
 classTeacher = name;
 }
 public String toString() {
 return "[" + rollNumber + "," + name + "," + classTeacher +"
]";
 }
 public static void main(String[] args)
 {
 Student s1 = new Student(1,"A");
 Student s2 = new Student(2,"B");
 Student.assignTeacher("ABC");
 System.out.println(s1); System.out.println(s2);
 }
}

2. Sample program to read two integers using command line arguments and find
their maximum.
class Maximum
{
 public static void main(String[] args)
 {
 int n1, n2, ans;
 if(args.length != 2)
 System.out.println(”Invalid number of arguments”);
 else

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 10]

 {
 n1 = Integer.parseInt(args[0]);
 n2 = Integer.parseInt(args[1]);
 ans = n1 > n2? n1 : n2;
 System.out.println(“The maximum is “ + ans);
 }
 }
}

3. Sample program to read Student roll number and name from the console and
display them.
import java.io.*;
class ConsoleInput
{
 public static void main(String[] args) throws IOException
 {
 int rollNumber;
 String name;
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 System.out.println(“Enter the roll number: ”);
 rollNumber = Integer.parseInt(br.readLine());
 System.out.println(“Enter the name: ”);
 name = br.readLine();
 System.out.println(“Roll Number = “ + rollNumber);
 System.out.println(“Name = “ + name);
 }
}

Lab Assignments

SET A

� 1. Define a Student class (roll number, name, percentage). Define a default and
parameterized constructor. Override the toString method. Keep a count objects created.
Create objects using parameterized constructor and display the object count after each
object is created. (Use static member and method). Also display the contents of each
object.

� 2. Write a java program to create n objects of the Student class. Assign roll numbers in
the ascending order. Accept name and percentage from the user for each object. Define a
static method “sortStudent” which sorts the array on the basis of percentage.

Signature of the instructor Date / /

Set A : Additional Programs For Practice
1. Accept three integers using command line arguments and find their maximum and

minimum.
2. Define a class CricketPlayer (name, no_of_innings, no_times_notout, total_runs,

bat_avg). Create an array of n player objects. Calculate the batting average for each
player using a static method avg(). Define a static method “sortPlayer” which sorts the
array on the basis of average. Display the player details in sorted order.

3. Create a class date with day, month and year as members. Write appropriate member
functions. Create another class student, which has id, name ,date of birth and marks of
3 subjects as members. Write appropriate constructor for the student which assigns

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 11]

values to the members. Accept the details as command line arguments and create a
student object using the arguments. Display the student details in a proper format.

SET B

� 1. Create a package named Maths. Define class MathsOperations with static methods
to find the maximum and minimum of three numbers. Create another package Stats.
Define class StatsOperations with methods to find the average and median of three
numbers. Use these methods in main to perform operations on three integers accepted
using command line arguments.

� 2. Write a Java program to create a Package “SY” which has a class SYMarks
(members – ComputerTotal, MathsTotal, and ElectronicsTotal). Create another package
TY which has a class TYMarks (members – Theory, Practicals). Create n objects of
Student class (having rollNumber, name, SYMarks and TYMarks). Add the marks of SY
and TY computer subjects and calculate the Grade (‘A’ for >= 70, ‘B’ for >= 60 ‘C’ for
>= 50 , Pass Class for > =40 else ‘FAIL’) and display the result of the student in proper
format.

Signature of the instructor Date / /

SET C

� 1. Create a package called ‘nodepack’ which contains the class ‘Node’. Create another

package called ‘listpack’ which contains the class ‘LinkedList’ representing a
singly linked list. Write a program to create a singly linked list of 5 nodes in main
and display the elements. The elements are passed as command line arguments.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 12]

Assignment 3: Inheritance and Interfaces Start Date / /

Objectives

• To implement inheritance in java.
• To define abstract classes.
• To define and use interfaces.
• Use predefined interfaces like Cloneable

Reading

You should read the following topics before starting this exercise:

1. Concept of inheritance.
2. Use of extends keyword.
3. Concept of abstract class.
4. Defining an interface.
5. Use of implements keyword.

Ready Reference

Inheriting a class : The syntax to create a subclass is :

class SubClassName extends SuperClassName
{
 //class body
}

Example:
class Manager extends Employee
{ //code }

Types of Inheritance

Access in subclass
The following members can be accessed in a subclass:

i) public or protected superclass members.
ii) Members with no specifier if subclass is in same package.

The “super” keyword
It is used for three purposes:

i) Invoking superclass constructor - super(arguments)
ii) Accessing superclass members – super.member
iii) Invoking superclass methods – super.method(arguments)

Example:
class A
{ protected int num;

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 13]

 A(int num) { this.num = num; }
}
class B extends A
{
 int num;
 B(int a, int b) {
 super(a); //should be the first line in the subclass constructor
 this.num = b;
 }
 void display() {
 System.out.println(“In A, num = “ + super.num);
 System.out.println(“In B, num = “ + num);
 }
}
Overriding methods
Redefining superclass methods in a subclass is called overriding. The signature of the
subclass method should be the same as the superclass method.
class A
{
 void method1(int num) {
 //code
 }
}
class B extends A
{
 void method1(int x) {
 //code
 }
}
Dynamic binding
When over-riding is used, the method call is resolved during run-time i.e. depending on
the object type, the corresponding method will be invoked.
Example:
A ref;
ref = new A();
ref.method1(10); //calls method of class A
ref = new B();
ref.method1(20); //calls method of class B

Abstract class
An abstract class is a class which cannot be instantiated. It is only used to create
subclasses. A class which has abstract methods must be declared abstract. An abstract
class can have data members, constructors, method definitions and method declarations.

abstract class ClassName
{
 ...
}

Abstract method
An abstract method is a method which has no definition. The definition is provided by the
subclass.

abstract returnType method(arguments);

Interface
An interface is a pure abstract class i.e. it has only abstract methods and final variables.
An interface can be implemented by multiple classes.

interface InterfaceName
{
 //abstract methods
 //final variables
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 14]

Example:
interface MyInterface
{
 void method1();
 void method2();
 int size= 10; //final and static
}
class MyClass implements MyInterface {
 //define method1 and method2
}

Cloning
Cloning creates an identical copy of an object. To clone an object of a class, the class
must implement Cloneable interface. This is an empty interface (tagging or marker
interface). To clone objects of a class, over-ride the clone() method of the Object class.
class MyClass implements Cloneable
{
 public Object clone()
 {
 MyClass cloned = super.clone();
 //clone members if required
 return cloned;
 }
}

Self Activity

1. Sample program to demonstrate inheritance
/* Program to demonstrate multilevel inheritance and use of super */
class Date
{
 int dd; int mm; int yy;
 public Date(){ dd=mm=yy=0; }
 public Date(int d,int m,int y){
 dd=d; mm=m; yy=y;
 }
 public String toString() {
 return dd+"/"+mm+"/"+yy;
 }
} // end of Date class

class Employee
{
 int empID; String ename; Date bdate;
 int wdays;// working days in month
 double rate; //rate per day
 public Employee() {}
 public Employee(int eid,String n, Date d, int wd,double r){
 empID=eid; ename=n; bdate=d; wdays=wd; rate=r;
 }
}//end of class Employee

class Manager extends Employee
{
 double salary;
 Manager() {
 super(); salary=0;
 }
 Manager(int eid, String s,Date d,int wd, double rate)
 { super(eid,s,d,wd,rate); }
 public double computesal()

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 15]

 { return (wdays*rate); }
 public String toString()
 { return
empID+"\n"+ename+"\n"+bdate+"\n"+wdays+"\n"+rate+"\n"+this.computesal();
 }
} // end of class Manager

class SalesManager extends Manager
{
 double sales; double comm;
 SalesManager()
 { super(); sales=0; comm=0; }
 SalesManager(int eid,String n, Date d,int wd,double r,double
s,double c)
 {
 super(eid,n,d,wd,r);
 sales=s; comm=c;
 }
 public double computesal(){
 if (sales > 1000)
 return(super.computesal()+sales*comm);
 else
 return(super.computesal());
 }
 public String toString(){
 return
empID+"\n"+ename+"\n"+bdate+"\n"+wdays+"\n"+rate+"\n"+this.computesal();
 }
 public static void main(String[] args)
 {
 Date d1=new Date(14,7,1979);
 Employee e1=new Employee(10,"A",d1,23,100.50);
 Manager m1=new Manager(10,"B",d1,23,200.50);
 System.out.println(m1);
 Date d2=new Date(12,4,2000);
 SalesManager sm1=new
SalesManager(20,"C",d2,27,150,1500,10.5);
 System.out.println(sm1);
 }// end of main
}// end of class SalesPerson

Lab Assignments

SET A

� 1. Define a class Employee having private members – id, name, department, salary.
Define default and parameterized constructors. Create a subclass called “Manager” with
private member bonus. Define methods accept and display in both the classes. Create n
objects of the Manager class and display the details of the manager having the maximum
total salary (salary+bonus)
� 2. Define an interface “IntOperations” with methods to check whether an integer is
positive, negative, even, odd, prime and operations like factorial and sum of digits. Define
a class MyNumber having one private int data member. Write a default constructor to
initialize it to 0 and another constructor to initialize it to a value (Use this). Implement the
above interface. Create an object in main. Use command line arguments to pass a value to
the object and perform the above operations using a menu.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 16]

� 3. Define an interface “StackOperations” which declares methods for a static stack.
Define a class “MyStack” which contains an array and top as data members and
implements the above interface. Initialize the stack using a constructor. Write a menu
driven program to perform operations on a stack object.

Signature of the instructor Date / /

Set A : Additional Programs For Practice
1. Create an abstract class Shape with methods calc_area and calc_volume. Derive three

classes Sphere(radius) , Cone(radius, height) and Cylinder(radius, height),
Box(length, breadth, height) from it. Calculate area and volume of all. (Use Method
overriding).

2. Define an interface “QueueOperations” which declares methods for a static queue.
Define a class “MyQueue” which contains an array and front and rear as data
members and implements the above interface. Initialize the queue using a constructor.
Write a menu driven program to perform operations on a queue object.

SET B
� 1. Define a class “Employee” which has members id, name, date of birth. Define
another class “Manager” which has members department name and joining date and
extends Employee. Create n objects of the manager class and clone them. (Use the
Cloneable interface)

� 2. Define an abstract class “Staff” with members name and address. Define two sub-
classes of this class – “FullTimeStaff” (department, salary) and “PartTimeStaff” (number-
of-hours, rate-per-hour). Define appropriate constructors. Create n objects which could
be of either FullTimeStaff or PartTimeStaff class by asking the user’s choice. Display
details of all “FullTimeStaff” objects and all “PartTimeStaff” objects.

Signature of the instructor Date / /

Set B : Additional Programs For Practice

1. Write a Java program to create a super class Vehicle having members Company and
price. Derive 2 different classes LightMotorVehicle (members – mileage) and
HeavyMotorVehicle (members – capacity-in-tons). Accept the information for n vehicles
and display the information in appropriate form. While taking data, ask the user about the
type of vehicle first.

SET C

� 1. Create an interface “CreditCardInterface” with methods to viewCreditAmount,
viewPin, changePin, useCard and payBalance. Create a class Customer (name, card
number, pin, creditAmount – initialized to 0). Implement methods viewCreditAmount,
viewPin, changePin and payBalance of the interface. From Customer, create classes
RegularCardHolder (maxCreditLimit) and GoldCardHolder (String specialPrivileges)
and define the remaining methods of the interface.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 17]

 Create n objects of the RegularCardHolder and GoldCardHolder classes and write
a menu driven program to perform the following actions
1. Use Card 2. Pay Balance 3. Change Pin

� 2. Write a program to create the following hierarchy of classes. A city has a n structures
(houses/buildings). Accept the user choice and accept and display details of each.

abstract class Structure {
 //members owner, location
}
class House extends Structure {

//member - no. of rooms
}
class Building extends House {
 //member - no. of floors, no of houses on each floor
}
public class City {
 //create n objects of house or building and display
details.
}

� 3. A bank maintains two kinds of accounts - Savings Account and Current Account.
The savings account provides compound interest, deposit and withdrawal facilities. The
current account only provides deposit and withdrawal facilities. Current account holders
should also maintain a minimum balance. If balance falls below this level, a service
charge is imposed. Create a class Account that stores customer name, account number,
and type of account. From this derive the classes Curr-acct and Sav-acct. Include the
necessary methods in order to achieve the following tasks.

a. Accept deposit from a customer and update the balance.
b. Display the balance.
c. Compute interest and add to balance.
d. Permit withdrawal and update the balance (Check for the minimum balance,

impose penalty if necessary).

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 18]

Assignment 4: Exception Handling and

Assertions
Start Date / /

Objectives

• Demonstrate exception handling mechanism in java
• Defining user defined exception classes
• Concept of Assertions

Reading

You should read the following topics before starting this exercise:

1. Concept of Exception
2. Exception class hierarchy.
3. Use of try, catch, throw, throws and finally keywords
4. Defining user defined exception classes
5. Assertions

Ready Reference
Exception: An exception is an abnormal condition that arises in a code at run time.
When an exception occurs,
1. An object representing that exception is created.
2. The method may handle the exception itself.
3. If the method cannot handle the exception, it “throws” this exception object to the

method which called it.
4. The exception is “caught” and processed by some method or finally by the default

java exception handler.

Predefined Exception classes
Java provides a hierarchy of Exception classes which represent an exception type.

Throwable

Error Exception

RuntimeException
Unchecked

errors

Unchecked
exceptions

Checked
exceptions

Exception Handling keywords

Exception handling in java is managed using 5 keywords: try , catch , throw,
throws, finally
Syntax

try
{
 // code that may cause an exception
}
catch (ExceptionType1 object)
{
 // handle the exception
}
catch (ExceptionType2 object)
{

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 19]

 // handle the exception
}
finally
{
 // this code is always executed
}

Example:
try
{
 int a = Integer.parseInt(args[0]);
 ...
}
catch(NumberFormatException e)
{
 System.out.println(“Caught”) ;
}
Note: try-catch blocks can be nested.

throw keyword:
The throw keyword is used to throw an exception object or to rethrow an exception.

throw exceptionObject;
Example:
catch(NumberFormatException e)
{
 System.out.println(“Caught and rethrown”) ;
 throw e;
}
We can explicitly create an exception object and throw it. For example:
throw new NumberFormatException();

throws keyword:
If the method cannot handle the exception, it must declare a list of exceptions it may
cause. This list is specified using the throws keyword in the method header. All checked
exceptions muct be caught or declared.
Syntax:
returnType methodName(arguments) throws ExceptionType1
[,ExceptionType2...]
{
 //method body
}
Example:
void acceptData() throws IOException
{
 //code
}
Exception Types:
There are two types of Exceptions, Checked exceptions and Unchecked exceptions.
Checked exceptions must be caught or rethrown. Unchecked exceptions do not have to be
caught.
Unchecked Exceptions:

Exception Meaning
ArithmeticException Arithmetic error, such as divide-by-zero.
ArrayIndexOutOfBoundsException Array index is out-of-bounds.
ArrayStoreException Assignment to an array element of an incompatible type.
ClassCastException Invalid cast.
IllegalArgumentException Illegal argument used to invoke a method.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 20]

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked
thread.

IllegalStateException Environment or application is in incorrect state.
IllegalThreadStateException Requested operation not compatible with current thread

state.
IndexOutOfBoundsException Some type of index is out-of-bounds.
NegativeArraySizeException Array created with a negative size.
NullPointerException Invalid use of a null reference.
NumberFormatException Invalid conversion of a string to a numeric format.
SecurityException Attempt to violate security.
StringIndexOutOfBounds Attempt to index outside the bounds of a string.
UnsupportedOperationException An unsupported operation was encountered.

Checked Exceptions:

User Defined Exceptions:
A user defined exception class can be created by extending the Exception class.

class UserDefinedException extends Exception
{
 //code
}

When that exception situation occurs, an object of this exception class can be created and
thrown. For example, if we are accepting an integer whose valid values are only positive,
then we can throw an “InvalidNumberException” for any negative value entered.
class NegativeNumberException extends Exception
{
 NegativeNumberException(int n){
 System.out.println(“Negative input “+ n);
 }
}
...
public static void main(String[] args)
{
 int num = Integer.parseInt(args[0]);
 if(num < 0)
 throw new NegativeNumberException(num);
 else
 //process num
}

Assertions:
An assertion is a statement containing a boolean expression that is assumed to be true
when the statement is executed. The system reports an AssertionError if the expression
evaluates to false.
For example, if you write a method that measures the current speed of a vehicle, you
might want to ensure that the speed is less than the maximum vehicle speed.

Exception Meaning
ClassNotFoundException Class not found.
CloneNotSupportedException Attempt to clone an object that does not implement the

Cloneable interface.
IllegalAccessException Access to a class is denied.
InstantiationException Attempt to create an object of an abstract class or interface.
InterruptedException One thread has been interrupted by another thread.
NoSuchFieldException A requested field does not exist.
NoSuchMethodException A requested method does not exist.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 21]

Assertions can be in two forms:

assert Expression1;
assert Expression1 : Expression2;

where : Expression11 is a boolean expression, Expression2 is an expression that has a
value.

Example:
assert i > 0;
assert i % 3 == 2 : i;

Enabling and Disabling Assertions:
By default, assertions are disabled. You enable them by running the program with the -
enableassertions or -ea option. To disable assertions, use the -da or
–disableassertions flag.
Examples:
java -enableassertions MyClass
java -ea:MyClass -ea:Pack1.MyClass2 MyApp
java –ea:MyClass –da:MyClass3 MyApp

Self Activity

1. Sample program
/* Program to demonstrate exceptions */
class NegativeNumberException extends Exception
{
 NegativeNumberException(int n){
 System.out.println(“Negative input : “ + n);
 }
}
public class ExceptionTest
 {
 public static void main(String args[])
 {
 int num, i, sum=0;
 try {
 num = Integer.parseInt(args[0]);
 if(num < 0)
 throw new NegativeNumberException(num);
 for(i=0; i<num; i++)
 sum = sum+i;
 }
 catch(NumberFormatException e){
 System.out.println(“Invalid format”);
 }
 catch(NegativeNumberException e){ }
 finally {
 System.out.println(“The sum is : “+sum);
 }
 } // end main
 } // end class
Compile and run the program for different inputs like abc, -3 and 10

2. Sample program
/* Program to demonstrate exceptions */
import java.io.*;

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 22]

public class AssertTest
{
 public static void main(String args[]) throws IOException
 {
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 System.out.print("Enter a number between 0 and 20: ");
 int number = Integer.parseInt(br.readLine());

 // assert that the absolute value is >= 0
 assert (number >= 0 && number <= 20) : "Invalid number: " +
number;
 System.out.println("You entered: “ + number);
 } // end main
} // end class AssertTest
Enable assertions and run the program for inputs -3, 5 and 30

Lab Assignments

SET A

� 1. Create a class Student with attributes roll no, name, age and course. Initialize values
through parameterized constructor. If age of student is not in between 15 and 21 then
generate user-defined exception “AgeNotWithinRangeException”. If name contains
numbers or special symbols raise exception “NameNotValidException”. Define the two
exception classes.

� 2. A program accepts two integers as command line arguments. It displays all prime

numbers between these two. Using assertions, validate the input for the following
criteria: Both should be positive integers. The second should be larger than the first.

Signature of the instructor Date / /

Set A : Additional Programs For Practice
1. Define Exceptions VowelException ,BlankException,ExitException.Write another

class Test which reads a character from command line. If it is a vowel, throw
VowelException,if it is blank throw BlankException and for a character 'X' throw an
ExitException and terminate program. For any other character, display “Valid
character”.

2. Accept an integer as command line argument. Report an error using assertions if it is
not within the valid range of 0-20.

SET B

� 1. Define class MyDate with members day, month, year. Define default and

parameterized constructors. Accept values from the command line and create a date
object. Throw user defined exceptions – “InvalidDayException” or
“InvalidMonthException” if the day and month are invalid. If the date is valid,
display message “Valid date”.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 23]

� 2. Write a program which accept two integers and an arithmetic operator from the
command line and performs the operation. Fire the following user defined exceptions:
i. If the no of arguments are less than 3 then fire “IllegalNumberOfArguments”
ii. If the operator is not an Arithmetic operator, throw “InvalidOperatorException”.
iii. If result is –ve, then throw “NegativeResultException”

Signature of the instructor Date / /

SET C

� 1. Define a class which contains method “DisplayColor” which takes one character as
argument. Raise an error if the character is not an alphabet. If the alphabet is a color of
the rainbow, display the color name. If it is any other alphabet, report an error. Use
assertions.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 24]

Assignment 5: I/O and File Handling Start Date / /

Objectives

• Performing Input/Output operations using console and files.

Reading

You should read the following topics before starting this exercise:

1. Concept of streams
2. Types of streams
3. Byte and Character stream classes.
4. The File class

Ready Reference

java.io.File class

This class supports a platform-independent definition of file and directory names.
It also provides methods to list the files in a directory, to check the existence, readability,
writeability, type, size, and modification time of files and directories, to make new
directories, to rename files and directories, and to delete files and directories.
 Constructors:
 public File(String path);
 public File(String path, String name);
 public File(File dir, String name);
Example
 File f1=new File(“/home/java/a.txt”);
 Methods

1. boolean canRead()- Returns True if the file is readable.
2. boolean canWrite()- Returns True if the file is writeable.
3. String getName()- Returns the name of the File with any directory names omitted.
4. boolean exists()- Returns true if file exists
5. String getAbsolutePath()- Returns the complete filename. Otherwise, if the File is

a relative file specification, it returns the relative filename appended to the current
working directory.

6. String getParent()- Returns the directory of the File. If the File is an absolute
specification.

7. String getPath()- Returns the full name of the file, including the directory name.
8. boolean isDirectory()- Returns true if File Object is a directory
9. boolean isFile()- Returns true if File Object is a file
10. long lastModified()- Returns the modification time of the file (which should be

used for comparison with other file times only, and not interpreted as any
particular time format).

11. long length()- Returns the length of the file.
12. boolean delete()- deletes a file or directory. Returns true after successful deletion

of a file.
13. boolean mkdir ()- Creates a directory.
14. boolean renameTo (File dest)- Renames a file or directory. Returns true after

successful renaming

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 25]

Example 1:- Checking file existence
import java.io.File;
class FileTest
{

public static void main(String args[])
{

File f1=new File ("data.txt");
if (f1.exists())

 System.out.println ("File Exists");
else

 System.out.println ("File Does Not Exist");
 }
}

Directories
A directory is a File that contains a list of other files & directories. When you

create a File object & it is a directory, the isDirectory() method will return true. In this
case list method can be used to extract the list of other files & directories inside.
The forms of list() method is-

public String[] list()
 public String[] list(FilenameFilter filter)
Example :- Using a list()
String dirname=”/javaprg/demo”;
File f1=new File (dirname);
if (f1.isDirectory())
{

String s[]= f1.list();
for (int i=0; i<s.length; i++)
{

File f=new File (dirname+”/”+s[i]);
if (f.isDirectory())

System.out.println(s[i]+” is a directory”);
else

System.out.println(s[i]+” is a File”);
}

}

Streams
A stream is a sequence of bytes. When writing data to a stream, the stream is called an
output stream. When reading data from a stream, the stream is called an input stream. If a
stream has a buffer in memory, it is a buffered stream. Binary Streams contain binary
data. Character Streams have character data and are used for storing and retrieving text.

The two main types of Streams are ByteStream and CharacterStream.

ByteStream CharacterStream

InputStream OutputStream Reader Writer

There are four top level abstract stream classes: InputStream, OutputStream, Reader, and
Writer.
1. InputStream. A stream to read binary data.
2. OutputStream. A stream to write binary data.
3. Reader. A stream to read characters.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 26]

4. Writer. A stream to write characters.

ByteStream Classes

a. InputStream Methods-

1. int read ()- Returns an integer representation of next available byte of input.-1 is

returned at the stream end.
2. int read (byte buffer[])- Read up to buffer.length bytes into buffer & returns actual

number of bytes that are read. At the end returns –1.
3. int read(byte buffer[], int offset, int numbytes)- Attempts to read up to numbytes

bytes into buffer starting at buffer[offset]. Returns actual number of bytes that are
read. At the end returns –1.

4. void close()- to close the input stream
5. void mark(int numbytes)- places a mark at current point in input stream & remain

valid till number of bytes are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream beginning.
7. long skip(long numbytes)- skips number of bytes.
8. int available()- Returns number of bytes currently available for reading.

b. OutputStream Methods-

1. void close() - to close the OutputStream
2. void write (int b) - Writes a single byte to an output stream.
3. void write(byte buffer[]) - Writes a complete array of bytes to an output stream.
4. void write (byte buffer[], int offset, int numbytes) - Writes a sub range of

numbytes bytes from the array buffer, beginning at buffer[offset].
5. void flush() - clears the buffer.

The following table lists the Byte Stream classes

Stream Class Meaning
BufferedInputStream Buffered input stream
BufferedOutputStream Buffered output stream
ByteArrayInputStream Input stream that reads from a byte array
ByteArrayOutputStream Output stream that writes to a byte array
DataInputStream An input stream that contains methods for reading the Java

standard data types
DataOutputStream An output stream that contains methods for writing the Java

standard data types
FileInputStream Input stream that reads from a file
FileOutputStream Output stream that writes to a file
FilterInputStream Implements InputStream
FilterOutputStream Implements OutputStream
InputStream Abstract class that describes stream input
OutputStream Abstract class that describes stream output
PipedInputStream Input pipe
PipedOutputStream Output pipe
PrintStream Output stream that contains print() and println()
PushbackInputStream Input stream that supports one-byte “unget,” which returns a byte

to the input stream
RandomAccessFile Supports random access file I/O
SequenceInputStream Input stream that is a combination of two or more input streams

that will be read

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 27]

 CharacterStream Classes

1. Reader : Reader is an abstract class that defines Java’s method of streaming character
input. All methods in this class will throw an IOException.
Methods in this class-
1. int read ()- Returns an integer representation of next available character from

invoking stream. -1 is returned at the stream end.
2. int read (char buffer[])- Read up to buffer.length chacters to buffer & returns actual

number of characters that are successfully read. At the end returns –1.
3. int read(char buffer[], int offset, int numchars)- Attempts to read up to numchars

into buffer starting at buffer[offset]. Returns actual number of characters that are read.
At the end returns –1.

4. void close()- to close the input stream
5. void mark(int numchars)- places a mark at current point in input stream & remain

valid till number of characters are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream beginning.
7. long skip(long numchars)- skips number of characters.
8. int available()- Returns number of bytes currently available for reading.

b. Writer : Is an abstract class that defines streaming character output. All the methods in
this class returns a void value & throws an IOException. The methods are-

1. void close() - to close the OutputStream
2. void write (int ch) - Writes a single character to an output stream.
3. void write(char buffer[]) - Writes a complete array of characters to an output stream.
4. void write (char buffer[], int offset, int numchars) - Writes a sub range of
numchars from the array buffer, beginning at buffer[offset].
5. void write(String str)- Writes str to output stream.
6. void write(String str, int offset, int numchars)- Writes a subrange of numchars from
string beginning at offset.
7. void flush() - clears the buffer.

The following table lists the Character Stream classes

Stream Class Meaning
BufferedReader Buffered input character stream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file
FileWriter Output stream that writes to a file
FilterReader Filtered reader
FilterWriter Filtered writer
InputStreamReader Input stream that translates bytes to characters
LineNumberReader Input stream that counts lines
OutputStreamWriter Output stream that translates characters to bytes
PipedReader Input pipe
PipedWriter Output pipe
PrintWriter Output stream that contains print() and println()
PushbackReader Input stream that allows characters to be returned to the input

stream
Reader Abstract class that describes character stream input
StringReader Input stream that reads from a string

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 28]

StringWriter Output stream that writes to a string
Writer Abstract class that describes character stream output

RandomAccessFile
Random access files permit nonsequential, or random, access to a file's contents. To
access a file randomly, you open the file, seek a particular location, and read from or
write to that file. When opening a file using a RandomAccessFile, you can choose
whether to open it read-only or read write
RandomAccessFile (File file, String mode) throws FileNotFoundException
RandomAccessFile (String filePath, String mode) throws FileNotFoundException

The value of mode can be one of these:
 "r" Open for reading only.
 "rw" Open for reading and writing.

Methods:
1. position – Returns the current position
2. position(long) – Sets the position
3. read(ByteBuffer) – Reads bytes into the buffer from the stream
4. write(ByteBffer) – Writes bytes from the buffer to the stream
5. truncate(long) – Truncates the file (or other entity) connected to the stream

Example:
File f = new File(“data.dat”);
//Open the file for both reading and writing
RandomAccessFile rand = new RandomAccessFile(f,"rw");
rand.seek(f.length()); //Seek to end of file
rand.writeBytes("Append this line at the end"); //Write end of file
rand.close();
System.out.println("Write-Successful");

Self Activity

1. Sample program
/* Program to count occurrences of a string within a text file*/
import java.io.*;
import java.util.*;
public class TextFileReadApp
{
 public static void main (String arg[]) {
 File f = null;
 // Get the file from the argument line.
 if (arg.length > 0)
 f = new File (arg[0]);
 if (f == null || !fe.exists ()) {
 System.exit(0);
 }

 String string_to_find = arg[1];
 int num_lines = 0;
 try {
 FileReader file_reader = new FileReader (f);
 BufferedReader buf_reader = new BufferedReader (file_reader);
 // Read each line and search string
 do {
 String line = buf_reader.readLine ();
 if (line == null) break;
 if (line.indexOf(string_to_find) != -1) num_lines++;

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 29]

 } while (true);
 buf_reader.close ();
 }
 catch (IOException e) {
 System.out.println ("IO exception =" + e);
 }
 System.out.println ("No of lines containing “ + string_to_find +
“ = ” + num_lines);
 } // main
} //class TextFileReadApp
Run this program and pass two command line arguments: filename and string to search.

2. Sample program
/* Program to write and read primitive types to a file */
import java.io.*;
class PrimitiveTypes
{
 public static void main(String args[]) throws IOException {
 FileOutputStream fos=new FileOutputStream("info.dat");
 DataOutputStream dos=new DataOutputStream(fos);
 dos.writeInt(25); dos.writeBoolean(true);
 dos.writeChar('A'); dos.writeDouble(5.45);
 fos.close();

 FileInputStream fis=new FileInputStream("info.dat") ;
 DataInputStream dis=new DataInputStream(fis);
 int num =dis.readInt(); boolean b=dis.readBoolean();
 char ch=dis.readChar(); double dbl= dis.readDouble();
 System.out.println("Int- "+num +"\nBoolean- "+b);

 System.out.println("\nCharacter- "+ch+"\nDouble- "+dbl);
 fis.close();

 }
}
Compile this program and note the output.

Lab Assignments

SET A

� 1. Write a program to accept a string as command line argument and check whether it
is a file or directory. If it is a directory, list the contents of the directory, count how many
files the directory has and delete all files in that directory having extension .txt. (Ask the
user if the files have to be deleted). If it is a file, display all information about the file
(path, size, attributes etc).

� 2. Write a java program to accept two file names as command line arguments and copy
the contains of first to second in such a manner the case of all alphabet is changed and
digits are replaced by ‘*’. Display appropriate error message if the first file does not exist.
(Use methods from Character class)

� 3. Write a program to display the contents of a file in the reverse order.

Signature of the instructor Date / /

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 30]

Set A : Additional Programs For Practice

1. Accept a filename from the user and display the contents of the file.
2. Accept the names of two files and copy the contents of the first to the second. Add

Author name and Date in comments in the beginning of file. Add the comment
‘end of file’ at the end.

3. Accept the names of three files and copy the contents of the first two to the third.

SET B

� 1. Write a program to store item information (id, name, price, qty) in file “item.dat”.

Write a menu driven program to perform the following operations: i. Search for a
specific item by name. ii. Find costliest item. iii. Display all items and total cost

� 2. Write a program to store student information (roll number, name, percentage) in a

RandomAccessFile “student.dat”. Display the details of the student having a
specific roll number.

� 3. Write a Java program to accept an option, string and file name from user. Perform
following operations:

a. If no option is passed then print all lines in the file containing the string.
b. If the option passed is –c then print the count of lines containing the string.
c. If the option passed is –v then print the lines not containing the string.

Signature of the instructor Date / /

Set B: Additional Programs For Practice

1. Two files contain alternate strings from a poem. Merge these two into a third file.
2. A file contains a set of integers. Read this file and write the numbers and the

number in words in another file. Ex: 261 – Two hundred and Sixty One.

SET C

� 1. Write a menu driven program to perform the following operations on a binary file
“item.dat” which contains id, name, price and quantity.
 i. Add an item ii. Search for an item. iii. Delete an item
 iv. Modify details of an item. v. Display all items.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 31]

Assignment 6: GUI using Swing Start Date / /

Objectives

• To demonstrate GUI creation using Swing package and Layout managers.

Reading

You should read the following topics before starting this exercise

1. AWT and Swing concepts.
2. Layout managers in java
3. Containers and Components
4. Adding components to containers

Ready Reference

Graphical User Interface is used for entering input data, for user interaction during
processing and for displaying the output. Basic GUI elements are implemented in two
java packages – AWT and Swing. Swing is the newer package and swing classes are based
on AWT classes.

Swing Architecture:
The design of the Swing component classes is based on the Model-View-Controller
architecture, or MVC.

1. The model stores the data.
2. The view creates the visual representation from the data in the model.
3. The controller deals with user interaction and modifies the model and/or the view.

Swing Classes:
The following table lists some important Swing classes and their description.

Class Description
Box Container that uses a BoxLayout
JApplet Base class for Swing applets
JButton Selectable component that supports text/image display
JCheckBox Selectable component that displays state to user
JCheckBoxMenuItem Selectable component for a menu; displays state to user
JColorChooser For selecting colors
JComboBox For selecting from a drop-down list of choices
JComponent Base class for Swing components
JDesktopPane Container for internal frames
JDialog Base class for pop-up subwindows
JEditorPane For editing and display of formatted content
JFileChooser For selecting files and directories
JFormattedTextField For editing and display of a single line of formatted text
JFrame Base class for top-level windows
JInternalFrame Base class for top-level internal windows
JLabel For displaying text/images
JLayeredPane Container that supports overlapping components

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 32]

Class Description
JList For selecting from a scrollable list of choices
JMenu Selectable component for holding menu items; supports text/image display
JMenuBar For holding menus
JMenuItem Selectable component that supports text/image display
JOptionPane For creating pop-up messages
JPanel Basic component container
JPasswordField For editing and display of a password
JPopupMenu For holding menu items and popping up over components
JProgressBar For showing the progress of an operation to the user
JRadioButton Selectable component that displays state to user; included in ButtonGroup to

ensure that only one button is selected
JRadioButtonMenuItem Selectable component for menus; displays state to user; included in

ButtonGroup to ensure that only one button is selected
JRootPane Inner container used by JFrame, JApplet, and others
JScrollBar For control of a scrollable area
JScrollPane To provide scrolling support to another component
JSeparator For placing a separator line on a menu or toolbar
JSlider For selection from a numeric range of values
JSpinner For selection from a set of values, from a list, a numeric range, or a date range
JSplitPane Container allowing the user to select the amount of space for each of two

components
JTabbedPane Container allowing for multiple other containers to be displayed; each container

appears on a tab
JTable For display of tabular data
JTextArea For editing and display of single-attributed textual content
JTextField For editing and display of single-attributed textual content on a single line
JTextPane For editing and display of multi-attributed textual content
JToggleButton Selectable component that supports text/image display; selection triggers

component to stay “in”
JToolBar Draggable container
JToolTip Internally used for displaying tool tips above components
JTree For display of hierarchical data
JViewport Container for holding a component too big for its display area
JWindow Base class for pop-up windows

Layout Manager
 The job of a layout manager is to arrange components on a container. A layout manager
is an object of any class that implements the LayoutManager interface.
Each container has a layout manager associated with it. To change the layout manager for
a container, use the setLayout() method.
Syntax

setLayout(LayoutManager obj)

The predefined managers are listed below:
1. FlowLayout 2.BorderLayout 3.GridLayout
4. BoxLayout 5.CardLayout 6.GridBagLayout

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 33]

4 5 6

3

1 2

NORTH

WEST EASTCENTER

SOUTH
12

1 2 3

4 5 6

7 8 9

10 11

FlowLayout BorderLayout GridLayout

1

2

3

4

1 2 3 1 2

3 4
1

2

Card1

Card2

1

2 3 4

7
5 6

8 9

BoxLayout CardLayout GridBagLayout

Examples:
JPanel p1 = new JPanel()
p1.setLayout(new FlowLayout());
p1.setLayout(new BorderLayout());
p1.setLayout(new GridLayout(3,4));

Important Containers:

1. JFrame – This is a top-level container which can hold components and containers like
panels.
Constructors

JFrame()

JFrame(String title)

Important Methods

setSize(int width, int height) -Specifies size of the frame in pixels
setLocation(int x, int y) -Specifies upper left corner
setVisible(boolean visible) -Set true to display the frame
setTitle(String title) -Sets the frame title
setDefaultCloseOperation(int
mode) -Specifies the operation when frame is closed. The modes are:

 JFrame.EXIT_ON_CLOSE JFrame.DO_NOTHING_ON_CLOSE
 JFrame.HIDE_ON_CLOSE JFrame.DISPOSE_ON_CLOSE
pack() -Sets frame size to minimum size required to hold components

2. JPanel – This is a middle-level container which can hold components and can be
added to other containers like frame and panels.
Constructors
public javax.swing.JPanel(java.awt.LayoutManager, boolean);
public javax.swing.JPanel(java.awt.LayoutManager);
public javax.swing.JPanel(boolean);
public javax.swing.JPanel();

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 34]

Important Components :

1. Label

With the JLabel class, you can display unselectable text and images.
Constructors-

JLabel(Icon i) JLabel(Icon I , int n)
JLabel(String s) JLabel(String s, Icon i, int n)
JLabel(String s, int n) JLabel()
The int argument specifies the horizontal alignment of the label's contents within

its drawing area; defined in the SwingConstants interface (which JLabel implements):
LEFT (default), CENTER, RIGHT, LEADING, or TRAILING.
Methods-
1. Set or get the text displayed by the label.

void setText(String) String getText()
2. Set or get the image displayed by the label.

void setIcon (Icon) Icon getIcon()
3. Set or get the image displayed by the label when it's disabled. If you don't specify a

disabled image, then the look-and-feel creates one by manipulating the default image.
void setDisabledIcon(Icon) Icon getDisabledIcon()

4. Set or get where in the label its contents should be placed. For vertical alignment:
TOP, CENTER (the default), and BOTTOM.

void setHorizontalAlignment(int) void setVerticalAlignment(int)
int getHorizontalAlignment() int getVerticalAlignment()

2. Button

A Swing button can display both text and an image. The underlined letter in each
button's text shows the mnemonic which is the keyboard alternative.
Constructors-
 JButton(Icon I)

JButton(String s)
JButton(String s, Icon I)

Methods-
 void setDisabledIcon(Icon) void setPressedIcon(Icon)

void setSelectedIcon(Icon) void setRolloverIcon(Icon)
String getText() void setText(String)

Event- ActionEvent

3. Check box
Class- JCheckBox
Constructors-
JCheckBox(Icon i) JCheckBox(Icon i,booean state)
JCheckBox(String s) JCheckBox(String s, boolean state)
JCheckBox(String s, Icon i) JCheckBox(String s, Icon I, boolean state)
Methods-
 void setSelected(boolean state) String getText()
 void setText(String s)
Event- ItemEvent

4. Radio Button
Class- JRadioButton
Constructors-

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 35]

JRadioButton (String s) JRadioButton(String s, boolean state)
JRadioButton(Icon i) JRadioButton(Icon i, boolean state)
JRadioButton(String s, Icon i) JRadioButton(String s, Icon i, boolean
state)
JRadioButton()
To create a button group- ButtonGroup()
Adds a button to the group, or removes a button from the group.

void add(AbstractButton) void remove(AbstractButton)

5. Combo Box
Class- JComboBox
Constructors- JComboBox()
Methods-

void addItem(Object) Object getItemAt(int)
Object getSelectedItem() int getItemCount()

Event- ItemEvent

6. List
Constructor- JList(ListModel)
List models-

1. SINGLE_SELECTION - Only one item can be selected at a time. When the user
selects an item, any previously selected item is deselected first.

2. SINGLE_INTERVAL_SELECTION- Multiple, contiguous items can be selected.
When the user begins a new selection range, any previously selected items are
deselected first.

3. MULTIPLE_INTERVAL_SELECTION- The default. Any combination of items
can be selected. The user must explicitly deselect items.

Methods-
boolean isSelectedIndex(int) void setSelectedIndex(int)
void setSelectedIndices(int[]) void setSelectedValue(Object, boolean)
void setSelectedInterval(int, int) int getSelectedIndex()
int getMinSelectionIndex() int getMaxSelectionIndex()
int[] getSelectedIndices() Object getSelectedValue()
Object[] getSelectedValues()
Example-

listModel = new DefaultListModel();
listModel.addElement("India");
listModel.addElement("Japan");
listModel.addElement("France");
listModel.addElement("Denmark");
list = new JList(listModel);

Event- ActionEvent

7. Text classes

All text related classes are inherited from JTextComponent class
a. JTextField

Creates a text field. The int argument specifies the desired width in columns. The
String argument contains the field's initial text. The Document argument provides a
custom document for the field.
Constructors-

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 36]

JTextField() JTextField(String)
JTextField(String, int) JTextField(int)
JTextField(Document, String, int)

b. JPasswordField

Creates a password field. When present, the int argument specifies the desired
width in columns. The String argument contains the field's initial text. The Document
argument provides a custom document for the field.
Constructors-

JPasswordField() JPasswordField(String)
JPasswordField(String, int) JPasswordField(int)
JPasswordField(Document, String, int)

Methods-
1. Set or get the text displayed by the text field.

void setText(String) String getText()
2. Set or get the text displayed by the text field.

char[] getPassword()
3. Set or get whether the user can edit the text in the text field.

void setEditable(boolean) boolean isEditable()
4. Set or get the number of columns displayed by the text field. This is really just a hint

for computing the field's preferred width.
void setColumns(int); int getColumns()

5. Get the width of the text field's columns. This value is established implicitly by the
font. int getColumnWidth()

6. Set or get the echo character i.e. the character displayed instead of the actual
characters typed by the user.

void setEchoChar(char) char getEchoChar()
Event- ActionEvent

c. JTextArea
Represents a text area which can hold multiple lines of text
Constructors-

JTextArea (int row, int cols)
JTextArea (String s, int row, int cols)

Methods-
 void setColumns (int cols) void setRows (int rows)
 void append(String s) void setLineWrap (boolean)

8. Dialog Boxes
Types-

1. Modal- wont let the user interact with the remaining windows of
application until first deals with it. Ex- when user wants to read a file, user
must specify file name before prg. can begin read operation.

2. Modeless dialog box- Lets the user enters information in both, the dialog
box & remainder of application ex- toolbar.

Swing has a JOptionPane class, that lets you put a simple dialog box.
Methods in JOption Class

1. static void showMessageDialog()- Shows a message with ok button.
2. static int showConfirmDialog()- shows a message & gets users options

from set of options.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 37]

3. static int showOptionDialog- shows a message & get users options from
set of options.

4. String showInputDialog()- shows a message with one line of user input.

9. Menu

Creating and Setting Up Menu Bars

Constructor or Method Purpose

JMenuBar() Creates a menu bar.
JMenu add(JMenu) Creates a menu bar.
void setJMenuBar(JMenuBar)
JMenuBar getJMenuBar()

Sets or gets the menu bar of an applet, dialog, frame,
internal frame, or root pane.

Creating and Populating Menus

JMenu()
JMenu(String)

Creates a menu. The string specifies the text to display
for the menu.

JMenuItem add(JMenuItem)
JMenuItem add(Action)
JMenuItem add(String)

Adds a menu item to the current end of the menu. If the
argument is an Action object, then the menu creates a
menu item. If the argument is a string, then the menu
automatically creates a JMenuItem object that displays
the specified text.

void addSeparator() Adds a separator to the current end of the menu.

JMenuItem insert(JMenuItem, int)
JMenuItem insert(Action, int)
void insert(String, int)
void insertSeparator(int)

Inserts a menu item or separator into the menu at the
specified position. The first menu item is at position 0,
the second at position 1, and so on. The JMenuItem,
Action, and String arguments are treated the same as in
the corresponding add methods.

void remove(JMenuItem)
void remove(int)
void removeAll()

Removes the specified item(s) from the menu. If the
argument is an integer, then it specifies the position of
the menu item to be removed.

Implementing Menu Items

JMenuItem()
JMenuItem(String)
JMenuItem(Icon)
JMenuItem(String, Icon)
JMenuItem(String, int)

Creates an ordinary menu item. The icon argument, if
present, specifies the icon that the menu item should
display. Similarly, the string argument specifies the
text that the menu item should display. The integer
argument specifies the keyboard mnemonic to use. You
can specify any of the relevant VK constants defined in
the KeyEvent class. For example, to specify the A key,
use KeyEvent.VK_A.

JCheckBoxMenuItem()
JCheckBoxMenuItem(String)
JCheckBoxMenuItem(Icon)
JCheckBoxMenuItem(String, Icon)
JCheckBoxMenuItem(String, boolean)
JCheckBoxMenuItem(String, Icon,
boolean)

Creates a menu item that looks and acts like a check
box. The string argument, if any, specifies the text that
the menu item should display. If you specify true for
the boolean argument, then the menu item is initially
selected (checked). Otherwise, the menu item is
initially unselected.

JRadioButtonMenuItem()
JRadioButtonMenuItem(String)
JRadioButtonMenuItem(Icon)
JRadioButtonMenuItem(String, Icon)
JRadioButtonMenuItem(String, boolean)
JRadioButtonMenuItem(Icon, boolean)
JRadioButtonMenuItem(String, Icon,
boolean)

Creates a menu item that looks and acts like a radio
button. The string argument, if any, specifies the text
that the menu item should display. If you specify true
for the boolean argument, then the menu item is
initially selected. Otherwise, the menu item is initially
unselected.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 38]

void setState(boolean)
boolean getState() Set or get the selection state of a check box menu item.

void setEnabled(boolean) If the argument is true, enable the menu item.
Otherwise, disable the menu item.

Self Activity

1. Sample program
/* Program to demonstrate Button and text field */

import java.awt.event.*;
import javax.swing.*;
import java.awt.*;
public class JButtonDemo extends JFrame implements

ActionListener
{

JTextField jtf; JButton jb;
 public JButtonDemo()
 {

setLayout(new FlowLayout());
jtf=new JTextField(15);
add (jtf);
jb=new JButton (“Click Me”);
jb.addActionListener (this);
add(jb);
setSize(200,200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }
public void actionPerformed(ActionEvent ae)
{ jtf.setText (ae.getActionCommand()); }
public static void main(String[] args){

new JButtonDemo();
}

}

2. Sample program
/* Program to demonstrate Combobox */
import java.awt.*; import javax.swing.*; import java.awt.event.*;
public class JCdemo extends JFrame implements ItemListener
{

JTextField jtf; JCheckBox jcb1, jcb2;
public JCdemo()
{
setLayout(new FlowLayout());
jcb1=new JCheckBox("Swing Demos");
jcb1.addItemListener(this); add(jcb1);
jcb2=new JCheckBox("Java Demos");
jcb2.addItemListener(this); add(jcb2);

jtf=new JTextField(35); add(jtf);
setSize(200,200);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
public void itemStateChanged (ItemEvent ie)
{ String text = " ";
 if(jcb1.isSelected())
 text = text + jcb1.getText() + " ";
 if(jcb2.isSelected())

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 39]

 text = text + jcb2.getText();
 jtf.setText(text);
}
public static void main(String[] args){
 new JCdemo();
}

}

3. Sample program
/* Program to demonstrate Radio Button */
import java.awt.*; import javax.swing.*; import java.awt.event.*;
public class JRdemo extends JFrame implements ActionListener
{
 JTextField jtf;
 JRadioButton jrb1,jrb2; ButtonGroup bg;
 public JRdemo()
 {
 setLayout(new FlowLayout());
 bg=new ButtonGroup();

 jrb1=new JRadioButton("A");
 jrb1.addActionListener(this);
 bg.add(jrb1); add(jrb1);

 jrb2=new JRadioButton("B");
 jrb2.addActionListener(this);
 bg.add(jrb2); add(jrb2);
 jtf=new JTextField(5); add(jtf);
 setSize(200,200);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 public void actionPerformed (ActionEvent ae)
 { jtf.setText(ae.getActionCommand()); }
 public static void main(String[] args)
 { new JRdemo(); }
}
Type the above sample programs and execute them.

Lab Assignments

SET A

� 1. Write a java program to create the following GUI. Use appropriate layout managers.

� 2. Write a java program to create the following GUI screen using appropriate layout
managers.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 40]

� 3. Write a java program to create the following GUI screen using appropriate layout
managers.

Signature of the instructor Date / /

SET B
� 1. Write a java program to create the following GUI. Use appropriate layout managers.

� 2. Write a program to display the following menus and sub-menus.

� 3. Write a program to create the following GUI.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 41]

Signature of the instructor Date / /

SET C

� 1. Write a program to create the following GUI.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 42]

Assignment 7: Event Handling Start Date / /

Objectives

• Understanding the Event Handling mechanism in java.
• Using Event classes, Event Listeners and Adapters.

Reading

You should read the following topics before starting this exercise

1. Delegation event model
2. Event sources, Event listeners, Event classes, Adapter classes.
3. Anonymous class.

Ready Reference

Event handling is an important part of GUI based applications. Events are generated by
event sources. A mouse click, Window closed, key typed etc. are examples of events.
All java events are sub-classes of java.awt.AWTEvent class.

Java has two types of events:
1. Low-Level Events: Low-level events represent direct communication from user. A

low level event is a key press or a key release, a mouse click, drag, move or release,
and so on. Following are low level events.

Event Description
ComponentEvent Indicates that a component object (e.g. Button, List, TextField) is moved, resized,

rendered invisible or made visible again.
FocusEvent Indicates that a component has gained or lost the input focus.
KeyEvent Generated by a component object (such as TextField) when a key is pressed,

released or typed.
MouseEvent Indicates that a mouse action occurred in a component. E.g. mouse is pressed,

releases, clicked (pressed and released), moved or dragged.
ContainerEvent Indicates that a container’s contents are changed because a component was added

or removed.
WindowEvent Indicates that a window has changed its status. This low level event is generated

by a Window object when it is opened, closed, activated, deactivated, iconified,
deiconified or when focus is transferred into or out of the Window.

2. High-Level Events: High-level (also called as semantic events) events encapsulate the

meaning of a user interface component. These include following events.

Event Description
ActionEvent Indicates that a component-defined action occurred. This high-level event is

generated by a component (such as Button) when the component-specific action
occurs (such as being pressed).

AdjustmentEvent The adjustment event is emitted by Adjustable objects like scrollbars.
ItemEvent Indicates that an item was selected or deselected. This high-level event is

generated by an ItemSelectable object (such as a List) when an item is selected or
deselected by the user.

TextEvent Indicates that an object’s text changed. This high-level event is generated by an
object (such as TextComponent) when its text changes.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 43]

The following table lists the events, their corresponding listeners and the method to add
the listener to the component.
Event Event Source Event Listener Method to add listener to

event source
Low-level Events

ComponentEvent Component ComponentListener addComponentListener()
FocusEvent Component FocusListener addFocusListener()
KeyEvent Component KeyListener addKeyListener()
MouseEvent Component MouseListener

MouseMotionListener
addMouseListener()
addMouseMotionListener()

ContainerEvent Container ContainerListener addContainerListener()
WindowEvent Window WindowListener addWindowListener()

High-level Events
ActionEvent Button

List
MenuItem
TextField

ActionListener addActionListener()

ItemEvent Choice
CheckBox
CheckBoxMenuItem
List

ItemListener addItemListener()

AdjustmentEvent Scrollbar AdjustmentListener addAdjustmentListener()
TextEvent TextField

TextArea
TextListener addTextLIstener()

Event class hierarchy

java .util.EventObject

java.awt.AWTEvent

ActionEvent AdjustmentEvent ComponentEvent ItemEvent TextEvent

ContainerEvent FocusEvent InputEvent PaintEvent WindowEvent

KeyEvent MouseEvent
Listener Methods:

Methods Description
ComponentListener
componentResized(ComponentEvent e) Invoked when component’s size changes.
componentMoved(ComponentEvent e) Invoked when component’s position changes.
componentShown(ComponentEvent e) Invoked when component has been made visible.
componentHidden(ComponentEvent e) Invoked when component has been made invisible.
FocusListener
focusGained(FocusEvent e) Invoked when component gains the keyboard focus.
focusLost(FocusEvent e) Invoked when component loses the keyboard focus.
KeyListener
keyTyped(KeyEvent e) Invoked when a key is typed.
keyPressed(KeyEvent e) Invoked when a key is pressed.
keyReleased(KeyEvent e) Invoked when a key is released.
MouseListener
mouseClicked(MouseEvent e) Invoked when a mouse button is clicked (i.e. pressed and

released) on a component.
mousePressed(MouseEvent e) Invoked when a mouse button is pressed on a component.
mouseReleased(MouseEvent e) Invoked when a mouse button is released on a component.
mouseEntered(MouseEvent e) Invoked when a mouse enters a component.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 44]

mouseExited(MouseEvent e) Invoked when a mouse exits a component.
MouseMotionListener
mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a component and

then dragged.
mouseMoved(MouseEvent e) Invoked when a the mouse cursor is moved on to a component

but mouse button is not pressed.
ContainerListener
componentAdded(ContainerEvent e) Invoked when a component is added to the container.
componentRemoved(ContainerEvent e) Invoked when a component is removed from the container.
WindowListener
windowOpened(WindowEvent e) Invoked the first time a window is made visible
windowClosing(WindowEvent e) Invoked when the user attempts to close the window from the

window’s system menu.
windowClosed(WindowEvent e) Invoked when a window has been closed as the result of calling

dispose on the window.
windowIconified(WindowEvent e) Invoked when a window is changed from a normal to a

minimized state.
windowDeiconified(WindowEvent e) Invoked when a window is changed from minimized to normal

state.
windowActivated(WindowEvent e) Invoked when the window is set to be the active window.
windowDeactivated(WindowEvent e) Invoked when the window is no longer the active window.
ActionListener
actionPerformed(ActionEvent e) Invoked when an action occurs.
ComponentListsner
itemStateChanged(ActionEvent e) Invoked when an item has been selected or deselected by the

user.
AdjustmentListener
adjustmentValueChanged(ActionEvent e) Invoked when the value of the adjustable has changed.
TextListener
textValueChanged(ActionEvent e) Invoked when the value of the text has changed.

Adapter Classes:
All high level listeners contain only one method to handle the high-level events.

But most low level event listeners are designed to listen to multiple event subtypes (i.e. the
MouseListener listens to mouse-down, mouse-up, mouse-enter, etc.). AWT provides a set of
abstract “adapter” classes, which implements each listener interface. These allow programs to
easily subclass the Adapters and override only the methods representing event types they are
interested in, instead of implementing all methods in listener interfaces.

The Adapter classes provided by AWT are as follows:

java.awt.event.ComponenentAdapter java.awt.event.ContainerAdapter
java.awt.event.FocusAdapter java.awt.event.KeyAdapter
java.awt.event.MouseAdapter java.awt.event.MouseMotionAdapter
java.awt.event.WindowAdapter

Self Activity

1. Sample program
/* Program to handle mouse movements and key events on a frame*/
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class EventTest extends JFrame
{

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 45]

 JLabel l = new JLabel();
 EventTest()
 {
 setLayout(new FlowLayout());
 add(l);
 addKeyListener(new KeyAdapter()
 {
 public void keyTyped(KeyEvent ke)
 {
 l.setText("You typed " + ke.getKeyChar());
 }
 });
 addMouseMotionListener(new MouseMotionAdapter()
 {
 public void mouseMoved(MouseEvent me)
 {
 l.setText("Mouse moved : X = "+ me.getX() + "Y = " +
me.getY());
 }
 });
 setSize(200,200);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 public static void main(String[] args)
 { new EventTest(); }
}
Compile and execute the above program.

Lab Assignments

SET A

� 1. Write a java program to select the name of a text file and display it in the text field.
Display the contents of the file in a text area when the user clicks on View. (Use
FileChooser)

� 2. Write a java program to validate user login and password. If they do not match,
display appropriate message in a dialog box. The user is allowed maximum 3 chances.
(Use the screen designed in Assignment 6- Set A , 1)

� 3. Write a java program to accept user name in a text box. Accept the class of the user
(FY/SY/TY) using radio buttons and the hobbies of the user using check boxes. Display
the selected options in a text box. (Use the screen designed in Assignment 6 – Set A, 2)

Signature of the instructor Date / /

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 46]

Set A : Additional Programs For Practice
1. Program to for number conversion from decimal to binary, octal and hexadecimal

when the user clicks on “Calculate”. Don’t use standard functions for conversion.

2. Write a program to implement calculator as shown below. Display appropriate error

messages.
Arithmetic Calculator

On Off Clear

SET B

� 1. Write a program to implement a simple calculator. Display appropriate error
messages in a dialog box. (Use the screen designed in Assignment 6 – Set B, 1)

� 2. Write a program to create two lists and transfer elements from one list to another.
Multiple selection is allowed. The Add button allows an element to be added and the
Remove button allows an element to be removed (Accepted in an input dialog). Do not
add duplicate elements. (Use the screen designed in Assignment 6 – Set B, 2)

� 3. Write a menu driven program to perform the following operations on a set of
integers. The Load operation should load the numbers from a file to an array and display
the numbers in a panel. Use the file select dialog to choose the name of the file. The save
operation should save the contents of the array to the same file. The Compute menu
provides various menu options. The result should be displayed in a message box. The
Search operation accepts a number from the user in an input dialog and displays the
search result in a message dialog. The sort operation sorts the numbers and displays the
sorted data in the panel.

Signature of the instructor Date / /

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 47]

Set B: Additional Programs For Practice
1. Write a program to change the font and style of text using check boxes and radio

buttons for selection.
 Arial

Courier
Verdana

Bold
Italic
Underline

text

2. Write a Java program to design a screen containing four text fields. First for the text,
second for what to find and third for replace. Display result in the fourth text field.
Also display the count of total no. of occurrences. The button clear to clear the text
boxes.

SET C
� 1. Write a program to implement a Notepad using TextArea.

� 2. Write a program to implement Dijkstra’s shortest path algorithm. Accept the graph as
an adjacency cost matrix using a GUI and display the step-by-step process of calculating
the path.

� 3. Write a program to generate the calendar for any month and year. Also provide the
facility to view the calendar month-wise and year-wise.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 48]

Assignment 8: Applets Start Date / /

Objectives

• Creating java applets which run in a web browser.

Reading

You should read the following topics before starting this exercise

1. Concept of Applet
2. Difference between application and applet.
3. The Applet class
4. Applet lifecycle
5. Passing parameters to applets
6. The APPLET tag
7. Running an applet using browser and appletviewer

Ready Reference

Applets are small java programs which are executed and displayed in a java compatible
web browser.

Creating an applet

All applets are subclasses of the java.applet.Applet class. You can also create an
applet by extending the javax.swing.JApplet class. The syntax is:

class MyApplet extends Applet
{
 //applet methods
}

Applet methods:
Method Purpose
init() Automatically called to perform initialization of the applet. Executed only once.

start() Called every time the applet moves into sight on the Web browser to allow the applet
to start up its normal operations.

stop() Called every time the applet moves out of sight on the Web browser to allow the applet
to shut off expensive operations.

destroy() Called when the applet is being unloaded from the page to perform final release of
resources when the applet is no longer used

paint() Called each time the applets output needs to be redrawn.

Running an applet
1. Compile the applet code using javac
2. Use the java tool – appletviewer to view the applet (embed the APPLET tag in

comments in the code)
3. Use the APPLET tag in an HTML page and load the applet in a browser

Using appletviewer:
1. Write the HTML APPLET tag in comments in the source file.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 49]

2. Compile the applet source code using javac.
3. Use appletviewer ClassName.class to view the applet.
Using browser:
1. Create an HTML file containing the APPLET tag.
2. Compile the applet source code using javac.
3. In the web browser, open the HTML file.

The APPLET tag
< APPLET
 [CODEBASE = appletURL]
 CODE = appletClassFile
 [ALT = alternateText]
 [ARCHIVE = archiveFile]
 [NAME = appletInstanceName]
 WIDTH = pixels
 HEIGHT = pixels
 [ALIGN = alignment]
 [VSPACE = pixels]
 [HSPACE = pixels]
>
[< PARAM NAME = AttributeName VALUE = AttributeValue />]
</APPLET>

Attribute Value Meaning
align left

right
top
bottom
middle
baseline

Specifies the alignment of an applet according to
surrounding elements

alt text Specifies an alternate text for an applet
archive URL Specifies the location of an archive file
code URL Specifies the file name of a Java applet
codebase URL Specifies a relative base URL for applets specified in the

code attribute
height pixels Specifies the height of an applet
hspace pixels Defines the horizontal spacing around an applet
name name Defines the name for an applet (to use in scripts)
vspace pixels Defines the vertical spacing around an applet
width pixels Specifies the width of an applet
The mandatory attributes are CODE, HEIGHT and WIDTH.

Examples:
1. <applet code=MyApplet width=200 height=200 archive="files.jar">
 </applet>
2. <applet code=Simple.class width=100 height=200 codebase=”example/”>
 </applet>

Passing parameters to applets

The PARAM tag allows us to pass information to an applet when it starts running.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 50]

A parameter is a NAME – VALUE pair. Every parameter is identified by a name and it
has a value.
< PARAM NAME = AttributeName VALUE = AttributeValue />

Example:
<APPLET NAME = “MyApplet.class” WIDTH = 100 HEIGHT = 100>
<PARAM NAME = “ImageSource” VALUE = “project/images/”>
<PARAM NAME = “BackgroundColor” VALUE = “0xc0c0c0”>
<PARAM NAME = “FontColor” VALUE = “Red”>
</APPLET>

The Applet can retrieve information about the parameters using the getParameter()
method.
String getParameter(String parameterName);
Example:
String dirName = getParameter(“ImageSource”);
Color c = new Color(Integer.parseInt(getParameter(“BackgroundColor”)));

paint(), repaint() and update()
The paint() method redraws the applet. The repaint() method is used to force redrawing of
the applet. The update() method redraws only a portion of the applet.

Self Activity

1. Sample program
/* Program to display a message in an applet*/
import java.awt.*;
import java.applet.*;
/*
<applet code="MyApplet.class" width=200 height=100>
</applet>
*/
public class MyApplet extends Applet
{
 public void paint(Graphics g)
 {
 g.drawString(“My First Applet”, 20,20);
 }
}
Save this as MyApplet.java
Compile the file
Execute it using command – appletviewer MyApplet.class

2. Sample program
/* Applet with components*/
import java.awt.*;
import javax.swing.* ;
import java.applet.*;
/*
<applet code="MyApplet.class" width=200 height=100>
</applet>
*/
public class MyApplet extends Applet
{
 JPanel p;
 JTextField t;
 JButton b;
 public void init()

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 51]

 {
 p = new JPanel();
 p.setLayout(new FlowLayout());
 t = new JTextField(20);
 b = new JButton(“Click”);
 p.add(t); p.add(b);
 add(p);
 }
}
Save this as MyApplet.java
Compile the file
Execute it using command – appletviewer MyApplet.class

Lab Assignments

SET A

� 1. Create an applet to display a message at the center of the applet. The message is
passed as a parameter to the applet.

� 3. Create an applet to display coordinates of mouse movements in a text box.

� 2. Create a conversion applet which accepts value in one unit and converts it to another.
The input and output unit is selected from a list. Perform conversion to and from Feet,
Inches, Centimeters, Meters and Kilometers.

Signature of the instructor Date / /

SET B

� 1. Create an Applet which displays a message in the center of the screen. The message
indicates the events taking place on the applet window. Handle events like mouse click,
mouse moved, mouse dragged, mouse pressed, and key pressed. The message should
update each time an event occurs. The message should give details of the event such as
which mouse button was pressed, which key is pressed etc. (Hint: Use repaint(),
KeyListener, MouseListener, MouseEvent method getButton, KeyEvent methods
getKeyChar)

� 2. Create an applet which allows the user to draw figures like Oval, Line, Rectangle and
Rounded Rectangle. The selection is done using radio buttons. Retain previous drawn
objects on the applet window. (Hint: use update() method)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 52]

Signature of the instructor Date / /

SET C

� 1. Create an applet for an online multiple choice quiz. The applet displays questions
randomly chosen from a set of questions and accepts the answer from the user. At the end
of the quiz, display the total score and the correct answers.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

