
 1

UNIVERSITY OF PUNE

LAB COURSE I
SYSTEM PROGRAMMING

AND
OPERATING SYSTEM

(CS-331)

T.Y.B.SC.(COMPUTER SCIENCE)
SEMESTER I

 2

ADVISORS:
PROF. A. G. GANGARDE (CHAIRMAN, BOS-COMP. SC.)

CHAIRMAN:
MRS. CHITRA NAGARKAR

CO-ORDINATOR:
PROF. MRS. MANISHA BHARAMBE

AUTHORS:

 Ms. Sampada vaishampayan
 Mr. Srikant Korke
 Ms. Swati joshi
 Ms. Seema Purandare
 Ms. Rekha joshi

BOARD OF STUDY (COMPUTER SCIENCE) MEMBERS:

1. MR. M. N. SHELAR
2. DR.VILAS KHARAT
3. MR. S. N. SHINDE
4. MR. U. S. SURVE
5. MR. V. R. WANI
6. MR. S. S. DESHMUKH
7. MR. PRASHANT MULE

 3

ABOUT THE WORK BOOK
OBJECTIVES OF THIS BOOK
THIS WORKBOOK IS INTENDED TO BE USED BY T.Y.B.SC(COMPUTER SCIENCE) STUDENTS
FOR THE THREE COMPUTER SCIENCE LABORATORY COURSES.
THE OBJECTIVES OF THIS BOOK ARE
1. THE SCOPE OF THE COURSE.
2. BRINGING UNIFORMITY IN THE WAY COURSE IS CONDUCTED ACROSS DIFFERENT
COLLEGES.
3. CONTINUOUS ASSESSMENT OF THE STUDENTS.
4. PROVIDING READY REFERENCES FOR STUDENTS WHILE WORKING IN THE LAB.
HOW TO USE THIS BOOK?
THIS BOOK IS MANDATORY FOR THE COMPLETION OF THE LABORATORY COURSE. IT IS A
MEASURE OF THE PERFORMANCE OF THE STUDENT IN THE LABORATORY FOR THE ENTIRE
DURATION OF THE COURSE.
INSTRUCTIONS TO THE STUDENTS
1) STUDENTS SHOULD CARRY THIS BOOK DURING PRACTICAL SESSIONS OF COMPUTER
SCIENCE.
2) STUDENTS SHOULD MAINTAIN SEPARATE JOURNAL FOR THE SOURCE CODE AND OUTPUTS.
3) STUDENT SHOULD READ THE TOPICS MENTIONED IN READING SECTION OF THIS
BOOK BEFORE COMING FOR PRACTICAL.
4) STUDENTS SHOULD SOLVE ONLY THOSE EXERCISES WHICH ARE SELECTED BY
PRACTICAL IN-CHARGE AS A PART OF JOURNAL ACTIVITY. HOWEVER, STUDENTS ARE
FREE TO SOLVE ADDITIONAL EXERCISES TO DO MORE PRACTICE FOR THEIR PRACTICAL
EXAMINATION.
EXERCISE SET DIFFICULTY LEVEL RULE
SELF ACTIVITY NA STUDENT SHOULD SOLVE
THESE EXERCISES FOR PRACTICE ONLY.
SET A EASY ALL EXERCISES ARE COMPULSORY.
SET B MEDIUM AT LEAST ONE EXERCISE IS MANDATORY.
SET C DIFFICULT NOT COMPULSORY.
5) STUDENTS WILL BE ASSESSED FOR EACH EXERCISE ON A SCALE OF 5
1.NOT DONE 0
2. INCOMPLETE 1
3.LATE COMPLETE 2
4.NEEDS IMPROVEMENT 3
5.COMPLETE 4
6.WELLDONE 5

INSTRUCTIONS TO THE PRACTICAL IN-CHARGE
1) EXPLAIN THE ASSIGNMENT AND RELATED CONCEPTS IN AROUND TEN MINUTES
USING WHITE BOARD IF REQUIRED OR BY DEMONSTRATING THE SOFTWARE.
2) CHOOSE APPROPRIATE PROBLEMS TO BE SOLVED BY STUDENT.
3) AFTER A STUDENT COMPLETES A SPECIFIC SET, THE INSTRUCTOR HAS TO VERIFY THE
OUTPUTS AND SIGN IN THE PROVIDED SPACE AFTER THE ACTIVITY.

 4

4) ENSURE THAT THE STUDENTS USE GOOD PROGRAMMING PRACTICES.
5) YOU SHOULD EVALUATE EACH ASSIGNMENT CARRIED OUT BY A STUDENT ON A
SCALE OF 5 AS SPECIFIED ABOVE TICKING APPROPRIATE BOX.
6) THE VALUE SHOULD ALSO BE ENTERED ON ASSIGNMENT COMPLETION PAGE OF
RESPECTED LAB COURSE.

Assignment Number: 1
Title: Line Editor

Ready Reference:

A line editor is a text editor computer program that manipulates text primarily by the
display, modification, and movement of lines.

 5

Line editors are limited to primitive text-oriented input and output methods. Most edits
are a line-at-a-time. Typing, editing, and document display do not occur simultaneously.
Typically, typing does not enter text directly into the document. Instead, users modify the
document text by entering terse commands on a text-only terminal. Commands and text,
and corresponding output from the editor, will scroll up from the bottom of the screen in
the order that they are entered or printed to the screen. Although the commands typically
indicate the line(s) they modify, displaying the edited text within the context of larger
portions of the document requires a separate command.

Command Meaning
a To append
p To display
p m n To display range of lines
p m – n To display previous n lines from mth position
s Save
d n To delete nth line
d m n To delete range of lines
f <pat> To search pattern
i n To insert after nth line
m n1 n2 To move line n1 at n2 position
m n1 n2 n3 To move range of lines at n3
c n1 n2 To copy line n1 at position n2
c n1 n2 n3 To copy range of lines at n3
h To give help information about all commands

Algorithm :
 The name of the file to be edited is to be taken as a command line argument. Open
a empty file if no argument is supplied.
 Declare a node structure containing a character array to hold a line and two
pointers. One pointing to previous node and one to next node (Implement the line editor
using doubly linklist.)
 Write separate functions for each of the above operations.
 Your program should display a prompt to accept the command.

Operation :

1. a : (To append) Accept the line from the user.
 Using the pointers move to the end of the list

 6

 Create a new node and write the line in it
 Append the new node at the end of the present

 linked list

2. p : (To print or display) : Go to the starting of the linked list
 Print the contents of each node
 Traverse to the end of the linked list

3. p m n (To display a range of lines) : Accept m and n from the user
 Traverse from the starting of the linked list to
 the mth node
 Starting from the mth node, print the contents of

 the next n nodes.

4. p m - n (To display previous n lines) : Accept m and n from the user
 Traverse from the starting of the linked list to
 the mth node
 using the previous pointer of each node,

 traverse backward, and print the contents of the
 previous n nodes

5. s (Save) : Accept file name from user
 Create a new file with that name
 Traverse the link list and write the contents of

 each node to the file

6. d n : Accept n from the user
 Traverse the linked list from beginning to

 n-1th position.
 Change the next pointer of n-1 th node to
 point to n +1 th node, and the previous pointer
 of n + 1 th node to point to n – 1 th node
 Delete the nth node

7. d m n : Accept m and n from the user
 Traverse the linked list from beginning to

 m-1th position.
 Take another pointer and make it traverse n
 nodes from the mth node.
 Change the next pointer of m-1 th node to
 point to the next node after n nodes, and the
 previous pointer of this next node to point to
 the m – 1 th node
 Delete all the node in between

 7

8. f <pat> : Accept the pattern from the user
 Traverse the linked list from beginning to end
 and for each node where the pattern is found,

 print the node no.

9. i n : Accept the new line and n from the user
 Traverse the linked list from first position to

 nth position
 Create a new node to hold the new line
 Insert this node after the nth node

10. m n1 n2 : Accept n1 and n2 from the user
 Take two pointers and traverse the linked list

so that one pointer is at n1th node and second
pointer is at n2th node.
Change the previous and next pointers so that
the n1th node is moved after the n2th node.

 11. m n1 n2 n3 : Accept n1, n2 and n3 from the user
 Take three pointers and traverse the linked list

so that one pointer is at n1th node, second
pointer is at n2th node, and the third pointer is
at the n3rd node
Change the previous and next pointers so that
the nodes from n1 to n2 are moved after the
n3rd node.

 12. c n1 n2 : Accept n1 and n2 from the user
 Take two pointers and traverse the linked list

so that one pointer is at n1th node and second
pointer is at n2th node.
Create a new node and copy the contents of the
n1 th node to the new node
Append this new node after the n2th node.

 13. c n1 n2 n3 : Accept n1, n2 and n3 from the user
 Take three pointers and traverse the linked list

so that one pointer is at n1th node, second
pointer is at n2th node, and the third pointer is
at the n3rd node
Make as many new nodes as required ad copy
the lines from n1 to n2 into these new nodes
Insert these new nodes after the n3rd node.

 14. h : Display help for all the commands.

 8

Set A

1) Write a command line program for line editor. The file to be editied is taken as
command line argument; an empty file is opened for editing if no argument is
supplied. It should display a ‘$’ prompt to accept the line editing commands.
Implement the following commands:

i. a
ii. d n

iii. d m n
iv. s

2) Write a command line program for line editor. The file to be edited is taken as

command line argument; an empty file is opened for editing if no argument is
supplied. It should display a ‘$’ prompt to accept the line editing commands.
Implement the following commands:

i. a
ii. p

iii. p m n
iv. i n

Set B

1) Write a command line program for line editor. The file to be edited is taken as
command line argument; an empty file is opened for editing if no argument is
supplied. It should display a ‘$’ prompt to accept the line editing commands.
Implement the following commands:

i. a
ii. p

iii. m n1 n2
iv. m n1 n2 n3

3) Write a command line program for line editor. The file to be edited is taken as

command line argument; an empty file is opened for editing if no argument is
supplied. It should display a ‘$’ prompt to accept the line editing commands.
Implement the following commands:

i. a
ii. s

iii. c n1 n2
iv. c n1 n2 n3

Set C

1) Write a command line program for line editor. The file to be edited is taken as
command line argument; an empty file is opened for editing if no argument is
supplied. It should display a ‘$’ prompt to accept the line editing commands.
Implement the following commands:

 9

i. a
ii. p m – n

iii. f <pat>
iv. h

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []
3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion
__

Assignment Number : 2

Title : Simulator

Ready reference :
 Hypothetical Machine:

• Not Real Machine but used to illustrate features of machine language and
techniques used in assembler.

• The Addresses From 0,1,2,3,… and these addresses are accessible to
programmers.

• The machine has six condition codes from 0 to 5
• This machine can not handle string data.

 Simulator:

• Simulator is the program which can execute machine program of hypothetical
machine and produce result.

• The software which gives fill of the things which not really exist is called as
simulator.

Need Of simulator:

• Using simulator less time is required for debugging of simple programs.
• It is easier for programmer to explain complex problems if you have a simulator.
• It is easier to discover if a problem is in the hardware or software when you use a

simulator.
• The simulator requires no setup time.
• One of the primary advantages of simulators is that they are able to provide users

with practical feedback when designing real world systems.
 Instruction Set :

Opcode Mnemonic Format
01 ADD [Label] ADD op1 op2

 10

02 SUB [Label] SUB op1 op2
03 MULT [Label] MULT op1 op2
04 MOVER [Label] MOVER op1 op2
05 MOVEM [Label] MOVEM op1 op2
06 COND [Label] COMP op1 op2
07 BC [Label] BC op1 op2
08 DIV [Label] DIV op1 op2
09 READ [Label] READ op2
10 PRINT [Label] PRINT op2
11 STOP [Label] STOP

Conditional codes:

Opcode Condition
0 LT (Less Than)
1 LE (Less than or equal to)
2 EQ (Equal to)
3 GT (Greater than)
4 GE (Greater than or equal to)
5 ANY

**
Examples:

1. Program for addition of two numbers taken fromuser input
READ A
READ B

 MOVER AREG A
 ADD AREG B

 MOVEM AREG RES
 PRINT RES

 STOP
 A DS 1
 B DS 1
 RES DS 1
 END
 Hear Address are not given so, give the address 0 to first instruction, 1 to next and so
on as follows.

0. READ A
1. READ B
2. MOVER AREG A
3. ADD AREG B
4. MOVEM AREG RES
5. PRINT RES

 11

6. STOP
7. A DS 1
8. B DS 1
9. RES DS 1
10. END

Then write the opcode program using given codes and addresses as follows.

 090007 //09 for read 0 as no register is used 007 address of A

 090008 //09 for read 0 as no register is used 008 address of B

 041007 //04 for moving content of memory location 007 to register
 AREG 1 for register AREG 007 address of A

 011008 //01 for addition of content at 008 to register AREG

 051010 //05 for moving content of AREG to memory location 010
 1 as no register is used 010 address of RES
 100010 //10 print the content at memory location 010 on screen.

 110000 //11 to stop program execution.

 0 //for data input

 0 //for data input

 0
 This Opcode file is the input for simulator.

**

Data Structures Used:
 Mem[] : To Store Opcode instruction.
 Cond[] : To Store Conditions.
 REG[] :To Store Register Contents.
 PC : Program Counter

**

Algorithm:

 Step 1: Start.
 Step 2: Open Object Code File.

 12

 Step 3: Read All File and Store All Instructions in Mem[] Array.
 Step 4: Close Object File.
 Step 5: PC=0.
 Step 6: Separate Instruction, operand 1,operand 2 from each instruction whose address
 is PC.
 Step 7: If Instruction is
 1: REG[operand1-1] + = Mem[operand2]
 GOTO step 8
 2: REG[operand1-1] - = Mem[operand2]
 GOTO step 8
 3: REG[operand 1-1] * = Mem[operand2]
 GOTO step 8
 4: REG[operand1-1] = Mem[operand2]
 GOTO step 8
 5: Mem[operand2] = REG[operand1-1]
 GOTO step 8
 6: If REG[operand1-1] < Mem[operand2]
 then Cond[0] = 1 else Cond[0]=0

 If REG[operand1-1] < = Mem[operand2]
 then Cond[1] = 1 else Cond[1]=0

 If REG[operand1-1] = = Mem[operand2]
 then Cond[2] = 1 else Cond[2]=0

 If REG[operand1-1] > Mem[operand2]
 then Cond[3] = 1 else Cond[3]=0

 If REG[operand1-1] > = Mem[operand2]
 then Cond[4] = 1 else Cond[4]=0
 GOTO step 8.

 7: If Cond[operand1-1] = = 1 then PC=operand2 then goto Step 6.
 Else GOTO Step 8.

 8: REG[operand1-1]/=Mem[operand2]
 GOTO Step 8.
 9: Accept Mem[operand2]
 GOTO Step 8.
 10:Print Mem[operand2]
 GOTO Step 8.

 11:GOTO Step 9.

 Step 8: PC++
 GOTO step 6.

 13

 Step 9: Stop execution.

**

SET A:

1. Write a SMAC0 CPU simulator program in C for the following instruction
 set
 Mnemonic Opcode Meaning
 MOVER 01 Move memory operand contents to register
 MOVEM 02 Move register operand contents to memory
 READ 03 Read into memory operand
 PRINT 04 Print contents of memory operand
 COMP 05 Compare register & mem operand to set
 condition code appropriately
 BC 06 Branch to 2nd operator depending on cond
 code specified as 1st operand
 MULT 07 Multiply memory operand to register operand
 DIV 08 Divide memory operand to register operand
 ADD 09 Add memory operand to register operand
 SUB 10 Subtract memory operand to register operand
 STOP 11 Stop of halt execution
 Assemble following program manually and execute it using above simulator.
 READ N
 MOVER AREG, N
 COMP AREG, ZERO
 BC LT, SHOW1
 COMP AREG, ZERO
 BC GE, SHOW
 SHOW PRINT ONE
 STOP
 SHOW1 PRINT ZERO
 STOP
 N DS 1
 ONE DC 1
 ZERO DC 0
 END

2. Write a SMAC0 CPU simulator program in C for the following instruction set
 Mnemonic Opcode Meaning
 READ 01 Read into memory operand
 PRINT 02 Print contents of memory operand

 14

 STOP 03 Stop of halt execution
 ADD 04 Add memory operand to register operand
 SUB 05 Subtract memory operand to register operand
 MOVER 06 Move memory operand contents to register
 MOVEM 07 Move register operand contents to memory
 MULT 08 Multiply memory operand to register operand
 DIV 09 Divide memory operand to register operand
 BC 10 Branch to 2nd operator depending on cond
 code specified as 1st operand
 COMP 11 Compare register & mem operand to set condition
 code appropriately
 Assemble following program manually and execute it using above simulator.
 READ N
 LOOP MOVER AREG, SUM
 ADD AREG, N
 MOVEM AREG, SUM
 MOVER AREG, N
 SUB AREG, ONE
 COMP AREG, ZERO
 BC LE, OUT
 MOVEM AREG, N
 BC ANY, LOOP
 OUT PRINT SUM
 STOP
 N DS 1
 ZERO DC 0
 ONE DC 1
 SUM DC 0
 END

3: Write a SMAC0 CPU simulator program in C for the following instruction set
 Mnemonic Opcode Meaning
 STOP 01 Stop of halt execution
 SUB 02 Subtract memory operand to register operand
 ADD 03 Add memory operand to register operand
 DIV 04 Divide memory operand to register operand
 MULT 05 Multiply memory operand to register operand
 PRINT 06 Print contents of memory operand
 READ 07 Read into memory operand
 MOVEM 08 Move register operand contents to memory
 MOVER 09 Move memory operand contents to register
 BC 10 Branch to 2nd operator depending on cond
 code specified as 1st operand
 COMP 11 Compare register & mem operand to set condition
 code appropriately
 Assemble following program manualy and execute it using above simulator.

 15

 READ N
 LOOP MOVER AREG, N
 MULT AREG, I
 MOVEM AREG, ANS
 PRINT RES
 MOVEM AREG, I
 ADD AREG, ONE
 COMP AREG, TEN
 BC GE, HALT
 MOVEM AREG, I
 BC ANY, LOOP
 HALT STOP
 N DS 1
 RES DS 1
 I DC 1
 ONE DC 1
 TEN DC 10
 END

**
SET B:

1: Write a SMAC0 CPU simulator program in C for the following
 instruction set
 Mnemonic Opcode Meaning
 MOVER 01 Move memory operand contents to register
 MOVEM 02 Move register operand contents to memory
 READ 03 Read into memory operand
 PRINT 04 Print contents of memory operand
 COMP 05 Compare register & mem operand to set condition
 code appropriately
 BC 06 Branch to 2nd operator depending on cond
 code specified as 1st operand
 MULT 07 Multiply memory operand to register operand
 DIV 08 Divide memory operand to register operand
 ADD 09 Add memory operand to register operand
 SUB 10 Subtract memory operand to register operand
 STOP 11 Stop of halt execution
 Assemble following program manualy and execute it using above simulator.

 READ X

 READ Y
 MOVER AREG, ONE
 MOVEM AREG, ANS

 16

 MOVEM AREG, COUNT
 AGAIN MOVER BREG, COUNT

 MULT BREG, X
 MOVEM BREG, ANS
 MOVER AREG, COUNT
 ADD AREG, ONE
 MOVEM AREG, COUNT
 COMP AREG, Y
 BC LE, AGAIN
 PRINT ANS
 STOP

 COUNT DS 1
 ONE DC 1
 X DS 1
 Y DS 1
 ANS DS 1

 END

2: Write a SMAC0 CPU simulator program in C for the following instruction

 set
 Mnemonic Opcode Meaning
 MOVER 01 Move memory operand contents to register
 MOVEM 02 Move register operand contents to memory
 READ 03 Read into memory operand
 PRINT 04 Print contents of memory operand
 COMP 05 Compare register & mem operand to set
 condition code appropriately
 BC 06 Branch to 2nd operator depending on cond
 code specified as 1st operand
 MULT 07 Multiply memory operand to register operand
 DIV 08 Divide memory operand to register operand
 ADD 09 Add memory operand to register operand
 SUB 10 Subtract memory operand to register operand
 STOP 11 Stop of halt execution
 Assemble following program manually and execute it using above
simulator.

 READ N
 MOVER AREG, ONE
 MOVEM AREG, FACT
 MOVEM AREG, COUNT
 LOOP MOVER BREG, COUNT
 MULT BREG, FACT
 MOVEM BREG, FACT

 17

 MOVER AREG, COUNT
 ADD AREG, ONE
 MOVEM AREG, COUNT
 COMP AREG, N
 BC LE, LOOP
 PRINT FACT
 STOP

 COUNT DS 1
 ONE DC 1

 N DS 1
FACT DS 1
 END
**

SET C:

1:Write a SMAC0 CPU simulator program in C for the following instruction
 set
 Mnemonic Opcode Meaning
 MOVER 01 Move memory operand contents to register
 MOVEM 02 Move register operand contents to memory
 READ 03 Read into memory operand
 PRINT 04 Print contents of memory operand
 COMP 05 Compare register & mem operand to set
 condition code appropriately
 BC 06 Branch to 2nd operator depending on cond
 code specified as 1st operand
 MULT 07 Multiply memory operand to register operand
 DIV 08 Divide memory operand to register operand
 ADD 09 Add memory operand to register operand
 SUB 10 Subtract memory operand to register operand
 STOP 11 Stop of halt execution
 Assemble following program manually and execute it using above

simulator.

 READ N
 MOVER AREG, ZERO
 MOVEM AREG, SUM
 MOVEM AREG, COUNT

 AGAIN MOVER BREG, SUM
 ADD BREG, COUNT

 18

 MOVEM BREG, SUM
 MOVER AREG, COUNT
 ADD AREG, ONE
 MOVEM AREG, COUNT
 COMP AREG, N
 BC LE, AGAIN
 PRINT SUM
 STOP

 COUNT DS 1
 ONE DC 1
 N DS 1
 ZERO DC 1
 SUM DS 0
 END

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []
3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

Assignment No.: 3

Title: Assembler

Ready Reference:

Objective of this assignment is to write a C program that will accept a input file which
contains assembly language program using given instruction and translate the contents of
input file in to target file which is machine code specified in instruction code. Program
will execute in two parts. In first part it will accept input file and translate it into
intermediate code. In second part it will take intermediate code as input and convert it
into target code for error free input program .Program will also list out the errors from
input file for different types of errors.

Definition

Programming language processor that translates an assembly language program (the
source program) to the machine language program (the object program) executable by a
computer.

One pass assembler

 19

A one pass assembler passes over the source file exactly once, in the same pass collecting
the labels, resolving future references and doing the actual assembly. The difficult part is
to resolve future label references and assemble code
in one pass.

Two pass assembler

A two pass assembler does two passes over the
source file (the second pass can be over a file
generated in the first pass). In the first pass all it
does is looks for label definitions and introduces them
in the symbol table. In the second pass, after
the symbol table is complete, it does the actual
assembly by translating the operations and so
on.

Data Structure of Assembler:

 Data structure used in assembler is basically of two types

a) Data Structure contains information of machine: Not updated during
translation called predefined data structure.
They are

a) Operation code table (OPTAB) :This is used for storing mnemonic,
operation code and class of instruction
Structure of OPTAB is as follows

Operation
Code

Mnemonic

00 STOP
01 ADD
02 SUB
03 MULT
04 MOVER
05 MOVEM

 20

b) REGISTER TABLE (REGTAB): used to store register name & there

code.

c) CONDITION CODE TABLE (CCTAB) : Used to store condition
code

06 COMP

07 BC
08 DIV
09 READ
10 PRINT

Register
name

Code

AREG 1

BREG 2

CREG 3

DREG 4

 21

b) Data structure updated during translation: Also called as translation time data
structure. They are

I. SYMBOL TABLE (SYMTAB) : Ii contains entries such as

symbol,it’s address and value.

II. LITERAL TABLE (LITTAB) : it contains entries such as literal
and it’s value.

III . POOL TABLE (POOLTAB): Contains literal number of the
 starting literal of each literal pool.
IV: Location Counter which contains address of next instruction by

calculating length of each instruction.

Condition Code Code

LT 1

LE 2

EQ 3

GT 4

GE 5

ANY 6

SYMBOL ADDRESS VALUE

 LITERAL VVALUE

 22

ALGORITHM
 PASS 1

• Initialize location counter, entries of all tables as zero.
• Read statements from input file one by one.
• While next statement is not END statement

I. Tokenize or separate out input statement as
label,numonic,operand1,operand2

II. If label is present insert label into symbol table.
III. If the statement is LTORG statement processes it by

making it’s entry into literal table, pool table and allocate
memory.

IV. If statement is START or ORIGEN
 Process location counter accordingly.

V. If an EQU statement, assign value to symbol by correcting
entry in symbol table.

VI. For declarative statement update code, size and location
counter.

VII. Generate intermediate code.
VIII. Pass this intermediate code to pass -2.

 PASS -2

1. Initialize memory, table entries, and location
counter.

2. While next statement is not END

a) If statement is LTORG statement then
process literal ie assemble literal into
machine code.

b) For START/ORIGIN statement process
location counter.

c) For declarative statements assemble
constants into machine code.

d) For imperative statements get operand
address from symbol table or literal table
and assemble it to machine code.

e) If the instruction is in OPTAB get
appropriate opcode into intermediate code.

f) Move the contents to target code.
g) Print output file.

SET A
Q1. Write a program to accept a program written in assembly language. After accepting
 entire program list out errors wherever applicable.

a) Symbols used but not defined
b) Symbols declared but not used

 23

c) Redeclaration of symbols

Consider following program as input
 START 100
 READ X
Y MOVER BREG, X
 ADD BREG, X
X MOVEM AREG, Z
 STOP
 X DS 1
 Y DS 1
 END
Q2. Write a program to accept a program written in assembly language. After accepting
 entire program list out errors wherever applicable.

 a) Invalid statement
 b) Invalid mnemonic

Consider following program as input
 START 100 ,2
 READ A
 MOVER A,AREG
 BDD AREG, A
A MOVEM AREG, ‘=2’
 STOP
 X DS 1
 Y DS 1
 END

Q3. Write a program to accept a program written in assembly language. After accepting
 entire program list out errors wherever applicable.

a) Symbols used but not defined
b) Symbols declared but not used
c) Redeclaration of symbols

 d)Invalid symbol name

 Consider following program as input

 START 100
 READ A
 MOVER AREG, ORIGIN
 ADD AREG, A
A MOVEM AREG, C
 STOP

 24

 X DS 1
 Y DS 1
 END

Q4. Write a c program that will read given assembly language program as input.
 Display the contents of SYMBOL TABLE, LITERAL TABLE and POOL TABLE.
 Consider following program as input.
 START 100

MOVER AREG, =5
 MOVER BREG, =1
 MOVER BREG, A

LTORG
MOVER CREG, =4
MOVER DREG, =1
MOVER BREG, B
PRINT A
STOP

A DS 1
B DC 2

 END

SET B:

Q1 Write a assembler for error free assembly language program that will generate target
 code. Display the contents of symbol table. Also display target code generated.

 Consider following program
 READ N
LOOP MOVER AREG, SUM
 ADD AREG N
 MOVEM AREG SUM
 MOVER AREG N
 SUB AREG, ONE
 COMP AREG ZERO
 BC LE OUT
 MOVEM AREG N
 BC ANY LOOP
OUT PRINT SUM
 STOP
N DS 1
ZERO DC ‘0’
ONE DC ‘1’
SUM DC ‘0’
 END

Q 2 : Write a assembler for error free assembly language program that will generate

 25

 target code. Display the contents of symbol table, literal table. pool table. Also
 display target code generated.

Consider the following program as input

START 200
MOVER AREG, =’5’
MOVEM AREG, A

LOOP MOVER AREG, A
MOVER CREG, B
ADD CREG, =’1’
BC ANY, NEXT
LTORG

 =’5’
 =’1’
NEXT SUB AREG, =’1’

BC LT BACK
LAST STOP

ORIGIN LOOP+2
MULT CREG, B
ORIGIN LAST+1

A DS 1
BACK EQU LOOP
B DS 1

END

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []
3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

 26

Assignment Number:- 4
Title: Macro Preprocessor
Ready Reference:
Topic:

 Macro is a facility for extending the set of operations provided in an assembly
language through incorporation of new operations desired by a programmer.
 A macro definition is enclosed between MACRO and MEND keywords.
Eg.
 MACRO Macro header statement.
 INCR &X, &Y, ®=AREG Macro prototype statement
 MOVER ®, &X Model statements
 ADD ®, &Y
 MOVEM ®, &X
 MEND End of definition unit

 Parameters used in the prototype statement are formal parameters, starting with
special character &. When certain formal parameters have default values, it can be
specified using ‘=’ sign and are called as keyword parameters. Formal parameters
without default values are called as positional parameters.
 Macro Preprocessor is a program that take an assembly language program
(source program) with macro definition and macro calls as input and generates an
assembly program without any macro definitions and calls (i.e. it should perform
macro expansion) as an output.
Eg.

i) INCR P,Q A macro calls
ii) INCR P,Q, ®= BREG

 The Macro Preprocessor will expand the macro call as follows:

 i) MOVER AREG, P
 ADD AREG, Q
 MOVEM AREG, P

 ii) MOVER BREG, P
 ADD BREG, Q
 MOVEM BREG, P

Data structures used by Macro Preporcessor:

1. Macro Name Table (MNT) : Maintains following details

 27

Macro Name Number of
Positional
Prarameters(#PP)

Number of
Keyword
Prarameters(#KP)

Macro
Definition
Table Pointer
(MDTP)

Keyword
Parameter
Table Pointer
(KPDTP)

2. Parameter Name Table (PNTAB): Maintains the list of formal parameters.

3. Keyword Parameter Table (KPDTAB): Maintains the list of keyword parameters and
corresponding default values.

4.Macro Definition Table (MDT) : Stores the macro definition (prototype statements),
which is required for macro expansion.

5. Actual Parameter Table (APTAB) : Maintains the list of actual parameters, which has
to be used during macro expansion.

 Design of a Macro Preprocessor :

 Step 1: Scan all macro definitions one by one for each macro defined.
 i) Enter their names in the Macro Name Table (MNT).
 ii) count number of positional and keyword parameters and add
 it in MNT (#KP,#PP).
 ii) Store list of keyword parameters with their default values in
 Keyword Parameter Default Table (KPDTAB)
 iii) Store the entire macro definition in the Macro Definition
 Table (MDT).
 iv) Add additional information to MNT indication where the
 keyword parameters and macro definition of a macro can be
 found (KPDTP, MDTP)
 Step 2: Examine all the statements in source program to detect macro calls. For
each macro call
 i) locate the macro in MNT.
 ii) Obtain information from MNT regarding position of the
 macro definition in MDT.
 iii) Process the macro call statements to establish
 correspondence between all formal parameters and their
 values (actual parameters)

 Step 3 : Expand the macro call by processing the statements in the MDT in a
sequence until the MEND statement is encountered.

Set A:
Write program for macro preprocessor which will

 28

1. Specify proper declarations of MNT(macro name, ppcount, kpcount, kptp, mdtp),
MDT(macro definition), PNTAB(name),KPTAB(name, value).

2. Create a file trial.asm as follows
MACRO
CALC &X,&Y,®=BREG,&OP=ADD
MOVER ®,&X
&OP ®, &Y
MOVEM ®, &X
MEND
READ A
READ B
CALC A,B, &OP=MULT
STOP
A DS 1
B DS 1
END

3. Program should read the input file given as command line argument and display it.

Set B:

1. Write code to identify a macro definition, separate macro prototype statement and
make entry in proper tables.
// separate () to separate macro prototype statement
//addmnt() to make proper entries in MNT
//addpntab() to make entries in PNTAB
// addkptab to make entries in KPTAB.

2.Write appropriate functions to display contents of MNT, KPTAB, PNTAB tables.
//displaymnt() to display contents of MNT
// displaykpt() to display contents of KPTAB
//displaypnt() to display contents of PNTAB

Set C:

1. Write appropriate function which returns the position if the macro name is present in
MNT otherwise returns -1. Write similar function to search for specific keyword
parameter. Write code for processing the macro definition and to display contents of
MDT.

// addmdt() make entries in MDT
//displaymdt () displays contents of MDT as
 MOVER (p,3) (p,1)
(p,4) (p,3) (p,2)

 29

 :
 :
MEND

2. Write function expand() to expand the macro call by building appropriate APL.
Display the assembly language program with expanded macro calls and show the
contents of all data structures.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []
3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

Assignment Number:- 5
Title: DFA -driver
Ready Reference:
Topic:

A finite state machine (FSM) or finite automaton (plural: automata), is a model of
behavior composed of a finite number of states, transitions between those states, and
actions.

It is similar to a "flow graph" where we can inspect the way in which the logic runs when
certain conditions are met.

A finite state machine is an abstract model of a machine with a primitive (sometimes
read-only) internal memory.

In the theory of computation, a deterministic finite automaton (DFA)—is a finite state
machine, where for each pair of state and input symbol; there is one and only one
transition to a next state.

DFAs recognize the set of regular languages, and no other languages.

 30

A DFA will take in, a string of input symbols. For each input symbol, it will then transit
to a state, given by, following a transition function. When the last input symbol has been
received, it will either accept or reject the string, depending on whether the DFA is in an
accepting state or a non-accepting state.

Introduction

A finite state machine (fsm) or finite automaton (plural: automata), is a model of
behavior composed of a finite number of states, transitions between those states, and
actions.

It is similar to a "flow graph" where we can inspect the way in which the logic runs when
certain conditions are met.

A finite state machine is an abstract model of a machine with a primitive (sometimes
read-only) internal memory.

In the theory of computation, a deterministic finite automaton (DFA)—is a finite state
machine, where for each pair of state and input symbol; there is one and only one
transition to a next state.

DFA’s recognize the set of regular languages, and no other languages.

A DFA will take in, a string of input symbols. For each input symbol, it will then transit
to a state, given by, following a transition function. When the last input symbol has been
received, it will either accept or reject the string, depending on whether the DFA is in an
accepting state or a non-accepting state.

Formal definition
A DFA is a 5-tuple , (q, Σ, δ, q0, f), consisting of
• A finite set of states (q)
• A finite set of input symbols called the alphabet (Σ)
• A transition function (δ : q × Σ → q)
• A start state (q0)
• A set of accept states (f ⊆ q)

Working

Let m be a DFA such that m = (q, Σ, δ, q0, f), and x = x0x1 ... Xn−1 be a string over the
alphabet Σ. M accepts the string x if a sequence of states, r0,r1, ..., rn, exists in q with the
following conditions:

1. r0 = q0
2. ri+1 = δ(ri, xi), for i = 0, ..., n−1

 31

3. rn ∈ f.

In words,

• The first condition says that the machine starts in the start state q0.
• The second condition says that given each character of string x, the machine will

transit from state to state, according to the transition function δ.
• The last condition says that, the machine accepts x if the last input of x causes the

machine to halt in one of the accepting states. Otherwise, it is said that the
automaton rejects the string.

The set of strings, the DFA accepts form a language, which is the language the DFA,
recognizes.

Example

Construct a DFA for a language Lover {a, b} such that string should start with ‘a’ and
ends with ‘b’.

The above transition diagram can be represented in form of DFA tuple as follows:
Q = {q0, q1, q2, q3}
∑ = {a, b}

Q0 Q1 Q2

Q3

 32

δ = Q X ∑ = Q

 where

Δ a b

q0 q1 q3

q1 q1 q2

q2 q1 q2

q3 q3 q3

q0 = initial state
F = {q2}

How to validate a string?

Example 1 : Validate string ababb

Currentstate Currentinputsymbol

Transition

Δ(currentstate,
currentinputsymbol)

Updated
currentstate

Q0 a Q1 Q1

Q1 b Q2 Q2

Q2 a Q1 Q1

Q1 b Q2 Q2

Q2 b Q2 Q2

As value of currentstate, after string termination is q2, & q2 belongs to final state, string
is valid.

Example 2 : validate string ababba

Currentstate Currentinputsymbol
Transition

Δ(currentstate, currentinputsymbol)

Updated
currentstate

 33

Q0 a Q1 Q1

Q1 b Q2 Q2

Q2 a Q1 Q1

Q1 b Q2 Q2

Q2 b Q2 Q2

Q2 a Q1 Q1

As value of currentstate, after string termination is q1, & q1 does not belong to final state,
string is invalid.

Algorithm to implement DFA driver :

Input :

1. Number of states
2. Number of input symbols
3. Character array to store input symbols
4. Initial state
5. Number of final states
6. Array to store final states
7. 2 dimensional array transition (with dimension number of states x input symbols)

to store states
8. Teststring to be validated

Output: DFA always give boolean output : yes, if string is acceted by DFA, no otherwise

Procedure :

1. Accept all the required input data
2. Let currentstate = initialstate
3. Traverse the entire string by scanning one character at a time.
4. Update currentstate by finding transition of current character of teststring from

currentstate.
5. Repeat step 4 till the end of the string.
6. Lastly, if currentstate belongs to array of final states, string is valid, else invalid.

Set a :

1. Implement DFA driver for following languages :

 34

(a) L = { set of all strings over {0, 1, 2} which start with 0 and contains
substring 102 }

(b) L = { set of all strings over {x, y, z} which start with xy, end with zz and
does not contain substring zxx }

(c) L = { set of all strings over {0, 1} which contain even number of 0’s and
odd number of 1’s }

Set b:

1. Implement DFA driver with all validation checks.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []
3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

