
ADVANCED OPERATING SYSTEMS

 UNIT 2 FILE AND DIRECTORY I/O

BY

MR.PRASAD SAWANT

OUT LINE OF SESSION

1. Buffer headers

2. structure of the buffer pool

3. scenarios for retrieval of a buffer

4. reading and writing disk blocks

5. Inodes

6. structure of regular file

7. Open

8. Read

9. Write

10. Lseek

11. Pipes

12. close

13. dup

ARCHITECTURE OF THE UNIX

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

LIBRARIES (1)

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

LIBRARIES (2)
1. Make system calls look like ordinary function

call.

2. Map these function call to the primitives needed

to enter the OS.

FILE SUBSYSTEM (1)

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

FILE SUBSYSTEM (2)

1. Managing files

2. Allocating file space

3. Administering free space

4. Controlling access to files

5. Retrieving data for users

1. Interact with set of system calls

1. open, close, read, write, state, chown, chmod …

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

BUFFERING MECHANISM (1)

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

BUFFERING MECHANISM (2)

Interact with block I/O device drivers to initiate data transfer to

and from kernel.

PROCESS CONTROL SUBSYSTEM (1)

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

PROCESS CONTROL SUBSYSTEM (2)

Responsible for process synchronization.

Interprocess communication (IPC)

Memory management

Process scheduling

Interact with set of system calls

• fork, exec, exit, wait, brk, signal …

PROCESS CONTROL SUBSYSTEM (3)

Memory management module

• Control the allocation of memory

Scheduler module

• Allocate the CPU to processes

Interprocess communication

• There are several forms.

HARDWARE CONTROL (1)

libraries

system call interface

file subsystem
 process
 control
 subsystem

inter-process
communication

scheduler

memory
management

hardware control

hardware

buffer cache

device drivers

character block

user Level
kernel Level

kernel Level
hardware Level

trap

user programs

HARDWARE CONTROL (2)

Responsible for handling interrupts and for communicating with

the machine.

AN OVERVIEW OF THE FILE SUBSYSTEM

inode (index node)

• a description of the disk layout of the file data and other information

FILE ACCESS

User
File Descriptor
Table File Table Inode Table

FILE SYSTEM LAYOUT

boot block

• Be needed to boot the system

super block

• Describes the state of a file system

inode list

• a list of inodes

data block

• contain file data and administrative data

boot
block

super
block

inode list data blocks

USER AND KERNEL STACK FOR

COPY PROGRAM

Addr of Frame 2

Ret addr after write call

Local
Vars

not
shown

params to
write

new buffer
count

Addr of Frame 1

Ret addr after copy call

Local
Vars

count

params to
copy

old
new

Addr of Frame 0

Ret addr after main call

Local
Vars

fdold
fdnew

params to
main

argc
argv

user stack

Addr of Frame 1

Ret addr after func2 call

Local
Vars

parms to kernel func2

Addr of Frame 0

Ret addr after func1 call

Local
Vars

params to kernel
func1

kernel stack

frame 3
call write()

frame 2
call copy()

frame 1
call main()

frame 3

frame 2
call func2()

frame 1
call func1()

frame 0 start frame 0 system call
interface

Direction of
stack growth

DATA STRUCTURES FOR PROCESSES

u area

main memory

region table
per process
region table

process table

PROCESS TABLE

State, ownership, event descriptor set

u pointer (address)

U AREA

• Pointer to the process table slot

• System call parameters

• File descriptor

• Internal I/O information

• Current directory and current root

• Process and file size limits

REGION TABLE

Text / Data

Shared / Private

PROCESS STATES

User mode

• currently executing

Kernel mode

• currently executing

Ready to run

• soon as the scheduler chooses it.

Sleeping

• no longer continue executing

• eg) waiting for I/O to complete.

PROCESS TRANSITION

1

2

4 3

kernel
running

user
running

context switch
permissible

ready to run

return sys call
or interrupt

interrupt,
interrupt return

schedule
process

sleep

wakeup

MULTIPLE PROCESES SLEEPING ON A

LOCK

Time Proc A Proc B Proc C

Buffer locked
Sleeps

Buffer locked
Sleeps

Buffer locked
Sleeps

Ready to run Ready to run Ready to run

Runs
Buffer unlocked
Lock buffer

Sleep for arbitrary reason

Runs
Buffer loced
Sleeps

Wakes up
Unlocks Buffer
Wake up all sleeping procs

Context switch,
eventually

Runs

Ready to run Ready to run

Runs
Buffer loced
Sleeps

Buffer is unlocked Wake up all sleeping procs

Session Contents

• Buffer Headers

• Structure of the Buffer Pool

• Scenarios for Retrieval of a Buffer

• Reading and Writing Disk Blocks

• Advantages & Disadvantages of the Buffer Cache

THE BUFFER CACHE

Kernel could read & write directly,but …

• System response time & throughput be poor

Kernel minimize the frequency of disk access

• By keeping a pool of internal data buffers

Transmit data between application programs and the file
system via the buffer cache.

Transmit auxiliary data between higher-level kernel algorithms
and the file system.

• super block – free space available on the file system

• inode – the layout of a file

 libraries

User level

Kernel level

 User programs

Hardware

Kernel level

Hardware level

trap

 system call interface

 File subsystem

 Buffer cache

character block

 Device drivers

 Hardware control

inter-process

communication

scheduler

memory

management

Process

control

subsystem

BUFFER HEADERS

Kernel allocates space for many buffers, during system
initialization

A buffer consists of two parts

• a memory array

• buffer header

Figure 3.1 Buffer Header

 device num

 block num

status

ptr to next buf on hash queue

ptr to previous buf on
hash queue

ptr to next buf on free list ptr to previous buf on
free list

ptr to data area

Data in logical disk
block = Data in buffer

device number

• logical file system number

block number

• block number of the data on disk

• Identify the buffer uniquely

Status is a combination condition

• The buffer is currently locked.

• The buffer contains valid data.

• “delayed-write” as condition

• The kernel is currently reading or writing the contents of buffer to
disk.

• A process is currently waiting for the buffer to become free.

STRUCTURE OF THE BUFFER POOL

Kernel cache data in buffer pool according to a LRU

A free list of buffer

• LRU order

• doubly linked circular list

• Kernel take a buffer from the head of the free list.

• When returning a buffer, attaches the buffer to the tail.

 free list

 head

 buf 1

 buf 2

 buf n

forward ptrs

back ptrs

Recently used

 free list

 head

 buf 1

 buf 2

 buf n

forward ptrs

back ptrs

Figure 3.2. Free list of Buffers

STRUCTURE OF THE BUFFER POOL

 free list

 head

 buf 2

 buf n

forward ptrs

back ptrs

When the kernel accesses a disk block

• Organize buffer into separate queue

• hashed as a function of the device and block number

• Every disk block exists only on hash queue and only once on the queue

Buffer is always on a hash queue, but is may or may not be on the free list

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

Figure 3.3 Buffers on the Hash Queues

STRUCTURE OF THE BUFFER POOL

Block number
0 module 4

SCENARIOS FOR RETRIEVAL OF A
BUFFER

 Algorithm determine logical device # and block #

 The algorithms for reading and writing disk blocks use the algorithm getblk

 Kernel finds the block on its hash queue

 buffer is free.

 buffer is currently busy.

 Kernel cannot find the block on the hash queue

 kernel allocates a buffer from the free list.

 In attempting to allocate a buffer from the free list, finds a buffer on the

free list that has been marked “delayed write”.

 free list of buffers is empty.

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for
block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5
*/

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes
free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while
loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

}

struct buffer_head * getblk(kdev_t dev, int block, int size)

{

 struct buffer_head * bh;

 int isize;

repeat: bh = get_hash_table(dev, block, size);

 if (bh) {

 if (!buffer_dirty(bh)) {

 bh->b_flushtime = 0;

 }

 return bh;

 }

 isize = BUFSIZE_INDEX(size);

get_free: bh = free_list[isize];

 if (!bh)

 goto refill;

 remove_from_free_list(bh);

 init_buffer(bh, dev, block, end_buffer_io_sync, NULL);

 bh->b_state=0;

 insert_into_queues(bh);

 return bh;

refill: refill_freelist(size);

 if (!find_buffer(dev,block,size))

 goto get_free;

 goto repeat;

}

L
 I N

 U
 X

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIRST SCENARIO IN FINDING A BUFFER:

 BUFFER ON HASH QUEUE (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 4 on First Hash
Queue

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIRST SCENARIO IN FINDING A BUFFER:

 BUFFER ON HASH QUEUE (B)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Remove Block 4 from Free list

SCENARIOS FOR RETRIEVAL OF A BUFFER
 ALGORITHM FOR RELEASING A BUFFER

Algorithm brelse

Input: locked buffer

{

 wakeup all process: event, waiting for any buffer to
become free;

 wakeup all process: event, waiting for this buffer to
become free;

 raise processor execution level to block interrupts;

 if (buffer contents valid and buffer not old)

 enqueue buffer at end of free list

 else

 enqueue buffer at beginning of free list

 lower processor execution level to allow interrupts;

 unlock(buffer);

}

SCENARIOS FOR RETRIEVAL OF A BUFFER
 ALGORITHM FOR RELEASING A BUFFER

Higher Priority

Lower Priority

Machine
Errors

 Clock

Disk

Network
Devices

Terminals

Software
Interrupts

Typical Interrupt Levels

When manipulating linked lists, block the disk interrupt

• Because handling the interrupt could corrupt the pointers

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for
block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5
*/

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes
free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while
loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

}

SCENARIOS FOR RETRIEVAL OF A BUFFER
 SECOND SCENARIO FOR BUFFER ALLOCATION (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 18 – Not in Cache

SCENARIOS FOR RETRIEVAL OF A BUFFER
 SECOND SCENARIO FOR BUFFER ALLOCATION (B)

 4

 5 17

10 50 98

99 35

 18

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(b) Remove First Block from Free list,
Assign to 18

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for
block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5
*/

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes
free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while
loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

}

SCENARIOS FOR RETRIEVAL OF A BUFFER
 THIRD SCENARIO FOR BUFFER ALLOCATION (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 18, Delayed Write Blocks on
Free List

delay

delay

SCENARIOS FOR RETRIEVAL OF A BUFFER
 THIRD SCENARIO FOR BUFFER ALLOCATION (B)

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(b) Writing Blocks 3, 5, Reassign 4 to 18

Writin
g

Writin
g

 18

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for
block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5
*/

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes
free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while
loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

}

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FOURTH SCENARIO FOR ALLOCATING BUFFER

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

Search for Block 18, Empty
Free list

Figure 3.10. Race for Free Buffer

 Somebody frees a buffer: brelse

Process A Process B

Cannot find block b

on hash queue

No buffers on free list

Sleep

Cannot find block b

 on hash queue

Sleep

No buffers on free list

Takes buffer from free list

Assign to block b

SCENARIOS FOR RETRIEVAL OF A BUFFER
 RACE FOR FREE BUFFER

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for
block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5
*/

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes
free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while
loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

}

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

 Search for Block 99, Block
busy

busy

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIFTH SCENARIO FOR BUFFER ALLOCATION

Figure 3.12 Race for a Locked Buffer

Time

Process A Process B Process C

Allocate buffer

 to block b

Lock buffer

Initiate I/O

Sleep until I/O done

I/O done, wake up

brelse(): wake up others

Find block b

on hash queue

Buffer locked, sleep

Buffer does not contain

 block b

Start search again

Sleep waiting for

 any free buffer

 (scenario 4)

Get buffer previously

assigned to block b

Reassign buffer to block b’

SCENARIOS FOR RETRIEVAL OF A BUFFER
 RACE FOR A LOCKED BUFFER

READING AND WRITING
 DISK BLOCKS

To read a disk block

• A process uses algorithm getblk to search for a disk block.

• In the cache

• The kernel can return a disk block without physically reading the
block from the disk.

• Not in the cache

• The kernel calls the disk driver to “schedule” a read
request.

• The kernel goes to sleep awaiting the event the I/O
completes.

• After I/O, the disk controller interrupts the processor.

• The disk interrupt handler awakens the sleeping process.

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR READING A DISK BLOCK

Algorithm bread /*block read */

Input: file system block number

Output: buffer containing data

{

 get buffer for block (algorithm getblk);

 if (buffer data valid)

 return buffer;

 initiate disk read;

 sleep(event disk read complete);

 return (buffer);

}

To read block ahead

• The kernel checks if the first block is in the cache or not.

• If the block in not in the cache, it invokes the disk driver to read the
block.

• If the second block is not in the buffer cache, the kernel instructs the
disk driver to read it asynchronously.

• The process goes to sleep awaiting the event that the I/O is complete
on the first block.

• When awakening, the process returns the buffer for the first block.

• When the I/O for the second block does complete, the disk controller
interrupts the system.

• Release buffer.

 READING AND WRITING
 DISK BLOCKS

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR BLOCK READ AHEAD

Algorithm breada /* block read and read ahead
*/

Input: (1) file system block number for immediate
read

 (2) file system block number for
asynchronous read

Output: buffer containing data for immediate read

{

 if (first block not in cache)

 {

 get buffer for first block (getblk);

 if (buffer data not valid)

 initiate disk read;

 }

 if (second block not in cache)

 {

 get buffer for second block(getblk);

 if (buffer data valid)

 release buffer(brelse)

 else

 initiate disk read;

 }

 if (first block was originally in cache)

 {

 read first block (bread);

 return buffer;

 }

 sleep(event first buffer contains valid
data);

 return buffer;

}

To write a disk block

• Kernel informs the disk driver that it has a buffer whose contents

should be output.

• Disk driver schedules the block for I/O.

• If the write is synchronous, the calling process goes the sleep

awaiting I/O completion and releases the buffer when it awakens.

• If the write is asynchronous, the kernel starts the disk write,but not

wait for write to complete.

• The kernel will release buffer when I/O completes

A delayed write vs. an asynchronous write

READING AND WRITING
 DISK BLOCKS

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR WRITING A DISK BLOCK

Algorithm bwrite /* block write */

Input: buffer

Output: none

{

 initiate disk write;

 if (I/O synchronous)

 {

 sleep(event I/O complete);

 release buffer(algorithm brelse);

 }

 else if (buffer marked for delayed write)

 mark buffer to put at head of free list;

}

Out line of Session

1. Inodes

2. Structure of a regular file

Definition Of Inodes

• Every file has a unique inode

• Contain the information necessary for a process

to access a file

• Exist in a static form on disk

• Kernel reads them into an in-core inode to

manipulate them.

Contents Of Disk Inodes

1. File owner identifier (individual/group owner)

2. File type (regular, directory,..)

3. File access permission (owner,group,other)

4. File access time

5. Number of links to the file

6. Table of contents for the disk address of data in a
file (byte stream vs discontiguous disk blocks)

7. File size

8. * Inode does not specify the path name that access
the file

SAMPLE DISK INODE

File owner identifier

File type

File access permission

File access time

Number of links to the file

Table of contents for the disk

address of data in a file

File size

Owner PMS

Group os

Type regular file

Perms rwxr-xr-x

Accessed Oct 23 2013 1:45 P.M

Modified Oct 22 2013 10:3
A.M

Inode Oct 23 2013 1:30 P.M

Size 6030 bytes

Disk addresses

Distinction Between Writing Inode And File

1. File change only when writing it.Inode change

when changing the file, or when changing its owner,

permisson,or link settings.

2. Changing a file implies a change to the inode,But,

changing the inode does not imply that the file

change.

Contents Of The In-core Copy Of The Inode
Fields of the disk inode

• Status of the in-core inode,

• Inode is locked

• Process is waiting for the inode to become unlocked

• Differ from the disk copy as a result of a change to the data

in the inode

• Differ from the disk copy as a result of a change to the file

data

• File is a mount point

2. Logical device number of the file system

3. Inode number (linear array on disk, disk inode not

need this field)

4. Pointers to other in-core inodes

5. Reference count

Contents Of The In-core Copy Of The Inode

In-core Inode Vs Buffer Header

In-core Inode

• An inode is on the free list only if its reference count is 0

• Kernel can reallocate the in-core inode to another disk inode

Buffer header

• No reference count

• It is on the free list if and only if it is unlocked

direct0

direct1

direct2

direct3

direct4

direct5

direct6

direct7

direct8

direct9

single indirect

double indirect

triple indirect

Inode Data Blocks

DIRECT AND INDIRECT BLOCKS IN

INODE (INODE TOC)

INODE TOC

Every blk size 1kb

Address of blk 4bytes

Every blk contain 256 pointer

D.I. pointer max size of file 10kb

S.I. pointer max size of file 256kb X 256kb

T.I. pointer max size of file 256kb X 256kb X 256 kb

 Max size =256kb X 256kb X 256kb X 10 kb

 = 28 X 28 X 28 X 210

QUESTION (JUSTIFY T/F)

Unix permit file size 16gb but it can only access file size of 4gb

ACCESSING INODES

1. Kernel identifies inodes by their file system and

inode number

2. Allocate in-core inodes at the request of higher-

level algorithms (in-core inode, by iget algorithm)

3. Kernel maps the device number & inode number

into a hash queue

4. Search the queue for the inode

…

ALGORITHM FOR ALLOCATION OF IN-

CORE INODES

algorithm iget

input: file system inode number

output: locked inode

{

 while(not done){

 if(inode in inode cache){

 if(inode locked){

 sleep(event inode becomes unlocked);

 coninue;

 }

 if(inode on inode free list) remove from free list;

 increment inode reference count

 reutrn(inode);

 }

 /*inode not in inode cache*/

if(no inodes on free list)

 return(error);

remove new inode from free list;

reset inode number and file system;

remove inode from old hash queue,place on new one;

read inode from disk(algorithm bread);

initialize inode (e.g. reference count to 1);

return(inode);

 }

}

ALGORITHM FOR ALLOCATION OF IN-

CORE INODES

BLOCK NUMBER & BYTE OFFSET

Computing logical disk block number

• Block number

= ((inode number –1) / number of inodes per block)

 + start block inode list

Computing byte offset of the inode in the block

• ((inode number –1) mod (number of inodes per block))

* size of disk inode

Inode Lock And Reference Count

Kernel manipulates Inode Lock And Reference Count
independently

Inode lock

• Set during execution of a system call to prevent other
processes from accessing the inode while it is in use.

• Kernel releases the lock at the conclusion of the system call

• Inode is never locked across system calls.

Reference count

• Kernel increase/decrease when reference is active/inactive

• Prevent the kernel from reallocating an active in-core inode

QUESTION (JUSTIFY T/F)

1. Inode is never access system call

2. Reference count is set to access system call

RELEASING AN INODE

algorithm iput /* release (put) access to in-core inode */

input: pointer to in-core inode

output: none

{

 lock inode if not already locked;

 decrement inode reference count;

 if(reference count ==0)

 {

 if(inode link count ==0)

 {

 free disk blocks for file (algorithm free,);

 set file type to 0;

 free inode (algorithm ifree,);

 }

 if(file accessed or inode changed or file changed) update disk inode;

 put inode on free list;

 }

 release inode lock;

}

File System Calls

File System Calls and Relation to Other Algorithms

open

creat

dup

pipe

close

creat

mknod

link

unlink

chown

chmod

stat

read

write

lseek

mount

umount

chdir

chown

open

creat

chdir

chroot

chown

chmod

stat

link

unlink

mknod

mount

umount

Return

File

Desc

Assign

inodes

File

Attributes

Use of

namei
File

I/O

File Sys

Structure

Tree

Manipulation

namei

ialloc ifree alloc free bmap
iget iput

Buffer allocation algorithms

 Lower Level File System Algorithms

getblk brelse bread breada bwirte

Algorithm namei /* convert path-name to inode */

Input : path name

Output : locked inode

{

 if (path name starts from root)

 working inode = root inode (algorithm iget);

 else

 working inode = current directory inode (algorithm iget);

 while (there is more path name)

 {

 read next path name component from input;

 varify that working inode is of directory, access permissions OK;

 if (working inode is of root and component is “..”)

 continue; /* loop back to while */

 read directory (working inode) by repeated use of alogrithms

 bmap, bread and brelse;

 if (component matches an entry in directory (working inode))

 {

 get inode number for matched component;

 release working inode (algorithm iput);

 working inode = inode of matched component (algorithm iget);

 }

 else

 return (no inode);

 }

 return (working inode);

}

 OPEN

First step a process must take to access the data in a file

Syntax

• fd = open(pathname, flags, modes)

• pathname : file name

• flags : type of open (ex. reading, writing)

• modes : file permissions if the file is being created

• fd : the user file descriptor , integer

Namei file name -> inode

File permission file table entry

 Pointer : inode

• Field : byte offset (0 or write-append mode)

User file descriptor table entry

Algorithm for Opening a File

OPEN EXAMPLE (1)

fd1 = open(“/etc/passwd”, O_RDONLY);

fd2 = open(“local”, O_RDWR);

fd3 = open(“/etc/passwd”, O_WRONLY);

...

count Read
1

count Rd-Wrt

1

...

...

count Write

1

...

...

0
1
2
3
4
5
6
7

File table inode table

...

count (/etc/passwd)

2

count (local)

1

...

User file
descriptor table

OPEN EXAMPLE (2)

fd1= open(“/etc/passwd”, O_RDONLY);

fd2 = open(“private”, O_RDONLY);

...

count Read
1

count Rd-Wrt

1
...

...
count Write

1

count Read
1

count Read
1

...

inode table

User file
descriptor table
(proc A)

...

0
1
2
3
4
5

(proc B)

...

0
1
2
3
4
5

File table

...

count (/etc/passwd)

3

count (local)

1

...

count (private)

1

...

 READ

Syntax

• number = read(fd, buffer, count);

• fd : file descriptor returned by open

• buffer : address of a data structure that will contain data

• count : number of bytes the user want to read

• number : number of bytes actually read

U –area

• mode : indicates read or write

• count : count of bytes to read or write

• offset : byte offset in file

• address : target address to copy data, in user or kernel memory

• flag : indicates if address is in user or kernel memory

ALGORITHM FOR READING A FILE

Get file table entry from user file descriptor

Set parameters in u area

Get inode from file table and lock inode

Repeat loop until user request is satisfied

• Converting the file byte offset to a block number

• Reading the block from disk to a system buffer

• Copying data from the buffer to the user process

• Releasing the buffer

• Updating I/O parameters in the u area

Algorithm read

Input : user file descriptor

 address of buffer in user process

 number of bytes to read

Output : count of bytes copied into user space

{

 get file table entry from user file descriptor;

 check file accessibility;

 set parameters in u area for user address, byte count, I/O

to user;

 get inode from file table;

 lock inode;

 set byte offset in u area from file table offset;

 while (count not satisfied)

 {

 convert file offset to disk block (algorithm bmap);

 calculate offset into block, number of bytes to read ;

 if (number of bytes to read is 0) /* trying to

read end of file */

 break; /* out of loop

*/

 read block (algorithm breada if with read ahead,

algorithm bread otherwise);

 copy data from system buffer to user address;

 update u area field for file byte offset, read count,

address to write into user space;

 release buffer; /* locked in

bread */

 }

 unlock inode;

 update file table offset for next read;

 return(total number of bytes read);

}

 SAMPLE PROGRAM FOR READING A FILE

 #include <fcntl.h>

 main()

 {

 int fd;

 char lilbuf[20], bigbuf[1024];

 fd = open(“/etc/passwd”, O_RDONLY);

 read(fd, lilbuf, 20);

 read(fd, bigbuf, 1024);

 read(fd, lilbuf, 20);

 }

WRITE

Syntax

• number = write(fd, buffer, count);

Algorithm

• If the file does not contain a block that corresponds to the byte offset to be

written, the kernel allocate a new block

• The inode is locked

• Update the file size entry in the inode

Delayed write

• Use to write the data to disk

• caching

 CLOSE

Close an open file when it no longer wants to access it

Syntax

• close(fd);

• fd : file descriptor for the open file

Algorithm

• File descriptor, file table entry , inode table entry

• reference count > 1

• reference count = 1

• if other processes still reference the inode

• inode reference count = 0

• No process can keep a file open after it terminates

 CLOSE Example

...

count Read
1

count Rd-Wrt

1

...

...

count Write

1

count Read
0

count Read
0

...

inode table

User file
descriptor table
(proc A)

...

0
1
2
3
4
5

(proc B)

NULL
NULL

...

0
1
2
3
4
5

File table

...

count (/etc/passwd)

2

count (local)

1

...

count (private)

0

...

PIPES

pipe

• Transfer of data between processes in a FIFO

• Synchronization of process execution

• Traditionally use to store the data

named pipe vs. unnamed pipe

• Process use the open system call for named pipes, but pipe

system call create unnamed pipe.

PIPE SYSTEM CALL

Creation of a pipe

Syntax

• pipe (fdptr);
• fdptr : two file descriptors for reading and writing the pipe

Algorithm

• Assign an inode for a pipe from the pipe device
• Pipe device : a file system from which the kernel can assign inodes and data block

for pipes

• Allocate two file table entries for the read and write descriptor

• Update the information in the in-core inode
• Count : 1

• Inode reference count : 2

• Record byte offsets in the inode

 -> FIFO access

Algorithm pipe

Input : none

Output : read file descriptor

 write file descriptor

{

 assign new inode from pipe device (algorithm ialloc);

 allocate file table entry for reading, another for writing;

 initialize file table entries to point to new inode;

 allocate user file descriptor for reading, another for writing,

 initialize to point to respective file table entries;

 set inode reference count to 2;

 initialize count of inode readers, writers to 1;

}

NAMED PIPE

Semantics are the same as those of unnamed pipe

• Have a directory entry and be accessed by a path name

A process that opens the named pipe for reading will sleep

until another process opens the named pipe for writing

• Open a named pipe for reading and a writing exist

• No delay option

 READING AND WRITING PIPES

Process access data from a pipe in FIFO manner

Difference :

• Use only the direct blocks of the inode for greater efficiency

Circular queue

• to maintain Read and write pointers internally to preserve the FIFO order

Read pointer Write pointer

0 1 2 3 4 5 6 7 8 9

Direct blocks of inode

 READING AND WRITING PIPES

Four cases

• Writing a pipe that has room for the data being written

• Reading from a pipe that contains enough data to satisfy the read

• Check the pipe is empty

• Not empty – as to read regular file

• Reading from a pipe that does not contain enough data to satisfy the
read

• Pipe empty -> sleep

• Writing a pipe that does not have room for the data being written

• Kernel marks the inode -> sleep

 CLOSING PIPES

Same procedure for closing a regular file

Decrements the number of pipe readers or writers according to

file descriptor type

 PIPES EXAMPLE

char string[] = “hello”;

main()

{

 char buf[1024];

 char *cp1, *cp2;

 int fds[2];

 cp1 = string; cp2 = buf;

 while (*cp1) *cp2++ = *cp1++;

 pipe(fds);

 for (;;) {

 write(fds[1], buf, 6);

 read(fds[0], buf, 6);

 }

 }

DUP

The dup system call copies a file descriptor into the first free

slot of the user file descriptor table ,returning the new file

descriptor to the user

Syntax

• newfd = dup(fd);

• fd : file descriptor being duped

• newfd : new file descriptor that references the file

Fd1=open(“etc/passwd”,O_RDONLY);

Fd2=open(“local”,O_RDWR);

Fd3=open(“etc/passwd”,O_WRONLY);

Fd4=dup(Fd1);

...

File table

...

count
2

5

User file
descriptor table

Inode table

4
3
2
1
0

6
...

count

1

...

...

count

1

count (/etc/passwd)

2

count (local)

1

...

 DUP Example

 DUP EXAMPLE

 #include <fcntl.h>

 main()

 {

 int i, j;

 char buf1[512], buf2[512];

 i = open(“/etc/passwd”, O_RDONLY);

 j = dup(i);

 read(i, buf1, sizeof(buf1));

 read(j, buf2, sizeof(buf2));

 close(i);

 read(j, buf2, sizeof(buf2));

 }

SESSION OUT LINE

open, creat, file sharing, atomic operations, dup2, sync, fsync, and

fdatasync, fcntl, /dev/fd, stat, fstat, lstat, file types, Set-User-ID

and Set-Group-ID, file access permissions, ownership of

new files and directories, access function, umask function, chmod

and fchmod, sticky bit,chown, fchown, and lchown, file size, file

truncation, file systems, link, unlink, remove, and

rename functions, symbolic links, symlink and readlink functions,

file times, utime, mkdir and rmdir, reading directories, chdir,

fchdir, and getcwd, device special files

OPEN

A file is opened or created by calling the open function.

#include <fcntl.h>
int open(const char *pathname, int oflag, ... /* mode_t mode */);

Returns: file descriptor if OK, 1 on error

Flag Dec. Implementation

O_RDONLY Open for reading only. 0

O_WRONLY Open for writing only. 1

O_RDWR Open for reading and writing 2

OPEN

O_APPEND Append to the end of file on each write.

O_CREAT Create the file if it doesn't exist. This option requires a third argument to

the open function, the mode, which specifies the access permission bits

of the new file.

O_EXCL Generate an error if O_CREAT is also specified and the file already exists.

This test for whether the file already exists and the creation of the file if

it doesn't exist is an atomic operation.

O_TRUNC If the file exists and if it is successfully opened for either write-only or

readwrite, truncate its length to 0.

O_NOCTTY If the pathname refers to a terminal device, do not allocate the device

as the controlling terminal for this process

O_NONBLOCK If the pathname refers to a FIFO, a block special file, or a character

special file, this option sets the nonblocking mode for both the opening

of the file and subsequent I/O.

creat function

A new file can also be created by calling the creat function.

Note that this function is equivalent to

open (pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

There was no way to open a file that didn't already exist. Therefore, a separate system call, creat, was

needed to create new files. With the O_CREAT and O_TRUNC options now provided by open, a

separate creat function is no longer needed.

#include <fcntl.h>

 int creat(const char *pathname, mode_t mode);

Returns: file descriptor opened for write-only if OK, 1 on error

File Sharing

The UNIX System supports the sharing of open files among different processes

The kernel uses three data structures to represent an open file, and the relationships among them

determine the effect one process has on another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a table of open

file descriptors, which we can think of as a vector, with one entry per descriptor. Associated with

each file descriptor are

• The file descriptor flags

• A pointer to a file table entry

2. The kernel maintains a file table for all open files. Each file table entry contains

• The file status flags for the file, such as read, write, append, sync, and nonblocking;

• The current file offset

• A pointer to the v-node table entry for the file

3. Each open file (or device) has a v-node structure that contains information about the type of file and

pointers to functions that operate on the file. For most files, the v-node also contains the i-node for

the file. This information is read from disk when the file is opened, so that all the pertinent

information about the file is readily available. For example, the i-node contains the owner of the file,

the size of the file, pointers to where the actual data blocks for the file are located on disk, and so on.

Kernel Data Structures For Open Files

Kernel Data Structures For Open Files

ATOMIC OPERATIONS

Consider a single process that wants to append to the end of a file. Older versions of the

UNIX System didn't support the O_APPEND option to open, so the program was coded as

follows:

 if (lseek(fd, 0L, 2) < 0) /* position to EOF */

 err_sys("lseek error");

 if (write(fd, buf, 100) != 100) /* and write */

 err_sys("write error");

PREAD AND PWRITE FUNCTIONS

The Single UNIX Specification includes XSI extensions that allow applications to seek and perform
I/O atomically. These extensions are pread and pwrite.

Calling pread is equivalent to calling lseek followed by a call to read, with the following
exceptions.

1. There is no way to interrupt the two operations using pread.

2. The file pointer is not updated.

#include <unistd.h>

ssize_t pread(int filedes, void *buf, size_t nbytes, off_t offset);

Returns: number of bytes read, 0 if end of file, 1 on error

ssize_t pwrite(int filedes, const void *buf, size_t nbytes, off_t offset);

Returns: number of bytes written if OK, 1 on error

CREATING A FILE

DUP AND DUP2 FUNCTIONS

An existing file descriptor is duplicated by either of the following functions

Kernel Data Structures After Dup(1)

SYNC, FSYNC, AND FDATASYNC

FUNCTIONS

#include <unistd.h>
 int fsync(int filedes);
 int fdatasync(int filedes);

Returns: 0 if OK, 1 on error

void sync(void);

Fcntl Function

The fcntl function can change the properties of a file that is already open.

The fcntl function is used for five different purposes.

1. Duplicate an existing descriptor (cmd = F_DUPFD)

2. Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)

3. Get/set file status flags (cmd = F_GETFL or F_SETFL)

4. Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)

5. Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)

#include <fcntl.h>
 int fcntl(int filedes, int cmd, ... /* int arg */);

Returns: depends on cmd if OK (see following), 1 on error

FCNTL FUNCTION

F_DUPFD Duplicate the file descriptor filedes.

F_GETFD Return the file descriptor flags for filedes as the

value of the function. Currently, only one file

descriptor flag is defined: the FD_CLOEXEC flag.

F_SETFD Set the file descriptor flags for filedes. The new

flag value is set from the third argument

(taken as an integer).

F_GETFL Return the file status flags for filedes as the

value of the function.

FCNTL FUNCTION FILE STATUS FLAGS

FOR FCNTL

STAT, FSTAT, AND LSTAT FUNCTIONS

STAT, FSTAT, AND LSTAT FUNCTIONS

The stat function returns a structure of information about the

named file.

 The fstat function obtains information about the file that is

already open on the descriptor filedes.

 The lstat function is similar to stat, but when the named file is a

symbolic link, lstat returns information about the symbolic link,

not the file referenced by the symbolic link

FILE TYPES

1. Regular file.

2. Directory file

3. Block special file

4. Character special file

5. FIFO

6. Socket

7. Symbolic link

FILE TYPE MACROS IN

<sys/stat.h>

SET-USER-ID AND SET-GROUP-ID

Every process has six or more IDs associated with it.

FILE ACCESS PERMISSIONS

• All the file types have permissions

• There are nine permission bits for each file, divided into

three categories

RULES FOR FILE PERMISSION

1. The first rule is that whenever we want to open any type of file by name, we must have
execute permission in each directory mentioned in the name, including the current
directory, if it is implied. This is why the execute permission bit for a directory is often
called the search bit.

2. The read permission for a file determines whether we can open an existing file for reading:
the O_RDONLY and O_RDWR flags for the open function.

3. The write permission for a file determines whether we can open an existing file for writing:
the O_WRONLY and O_RDWR flags for the open function.

4. We must have write permission for a file to specify the O_TRUNC flag in the open
function.

5. We cannot create a new file in a directory unless we have write permission and execute
permission in the directory.

6. To delete an existing file, we need write permission and execute permission in the directory
containing the file. We do not need read permission or write permission for the file itself.

7. Execute permission for a file must be on if we want to execute the file using any of the six
exec functions The file also has to be a regular file.

OWNERSHIP OF NEW FILES AND

DIRECTORIES

The user ID of a new file is set to the effective user ID of the process. POSIX.1 allows an

implementation to choose one of the following options to determine the group ID of a new

file.

1. The group ID of a new file can be the effective group ID of the process.

2. The group ID of a new file can be the group ID of the directory in which the file is

being created.

ACCESS FUNCTION

The access function bases its tests on the real user and group IDs.

#include <unistd.h>
 int access(const char *pathname, int mode);

Returns: 0 if OK, 1 on error

UMASK FUNCTION

The umask function sets the file mode creation mask for the process and returns

the previous value.

#include <sys/stat.h>
 mode_t umask(mode_t cmask);

Returns: previous file mode creation mask

CHMOD AND FCHMOD FUNCTIONS

These two functions allow us to change the file access permissions for an

existing file.

THE MODE CONSTANTS FOR CHMOD

FUNCTIONS, FROM <SYS/STAT.H>

mode Description

S_ISUID set-user-ID on execution

S_ISGID set-group-ID on execution

S_ISVTX saved-text (sticky bit)

S_IRWXU read, write, and execute by user
(owner)

S_IRUSR

read by user (owner)

S_IWUSR

write by user (owner)

S_IXUSR

execute by user (owner)

S_IRWXG read, write, and execute by group

S_IRGRP

read by group

S_IWGRP

write by group

S_IXGRP

execute by group

S_IRWXO read, write, and execute by other
(world)

S_IROTH

read by other (world)

S_IWOTH

write by other (world)

S_IXOTH

execute by other (world)

STICKY BIT

If the bit is set for a directory, a file in the directory can be

removed or renamed only if the user has write permission for the

directory and one of the following:

Owns the file

Owns the directory

Is the superuser

CHOWN, FCHOWN, AND LCHOWN

FUNCTIONS

FILE SYSTEMS

DISK DRIVE, PARTITIONS, AND A FILE SYSTEM

CYLINDER GROUP'S I-NODES AND DATA BLOCKS IN MORE DETAIL

FILE TRUNCATION

There are times when we would like to truncate a file by chopping off

data at the end of the file. Emptying a file, which we can do with the

O_TRUNC flag to open, is a special case of truncation.

LINK, UNLINK, REMOVE, AND RENAME

FUNCTIONS

#include <unistd.h>

int link(const char *existingpath, const char *newpath);

Returns: 0 if OK, 1 on error

int unlink(const char *pathname);

Returns: 0 if OK, 1 on error

#include <stdio.h>

int remove(const char *pathname);

Returns: 0 if OK, 1 on error

int rename(const char *oldname, const char *newname);

Returns: 0 if OK, 1 on error

SYMBOLIC LINKS

A symbolic link is an indirect pointer to a file, unlike the hard links from the

previous section, which pointed directly to the i-node of the file. Symbolic links

were introduced to get around the limitations of hard links.

1. Hard links normally require that the link and the file reside in the same file

system

2. Only the superuser can create a hard link to a directory

SYMLINK FUNCTION

A symbolic link is created with the symlink function.

#include <unistd.h>
 int symlink(const char *actualpath, const char *sympath);

Returns: 0 if OK, 1 on error

READLINK FUNCTIONS

#include <unistd.h>

 ssize_t readlink(const char* restrict pathname, char *restrict
buf, size_t bufsize);

Returns: number of bytes read if OK, 1 on error

FILE TIMES

Three time fields are maintained for each file.

Note the difference between the modification time (st_mtime) and the changed-

status time (st_ctime). The modification time is when the contents of the file were

last modified. The changed-status time is when the i-node of the file was last

modified

UTIME FUNCTION

The access time and the modification time of a file can be changed with the

utime function.

 The structure used by this function is

struct utimbuf

{

 time_t actime; /* access time */

 time_t modtime; /* modification time */

}

#include <utime.h>
int utime(const char *pathname, const struct utimbuf *times);

Returns: 0 if OK, 1 on error

UTIME FUNCTION

The operation of this function, and the privileges required to execute it, depend
on whether the times argument is NULL.

• If times is a null pointer, the access time and the modification time are both
set to the current time. To do this, either the effective user ID of the process
must equal the owner ID of the file, or the process must have write
permission for the file.

• If times is a non-null pointer, the access time and the modification time are
set to the values in the structure pointed to by times. For this case, the
effective user ID of the process must equal the owner ID of the file, or the
process must be a superuser process. Merely having write permission for the
file is not adequate.

Note that we are unable to specify a value for the changed-status time, st_ctime
the time the i-node was last changed as this field is automatically updated when
the utime function is called.

MKDIR

Directories are created with the mkdir function and deleted with the

rmdir function.

#include <sys/stat.h>
int mkdir(const char *pathname, mode_t mode);

Returns: 0 if OK, 1 on error

RMDIR

An empty directory is deleted with the rmdir function.

#include <unistd.h>

 int rmdir(const char *pathname);

Returns: 0 if OK, 1 on error

READING DIRECTORIES

