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ARCHITECTURE OF THE UNIX 
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LIBRARIES (1) 
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LIBRARIES (2) 
1. Make system calls look like ordinary function 

call. 

2. Map these function call to the primitives needed 

to enter the OS. 



FILE SUBSYSTEM (1) 
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FILE SUBSYSTEM (2) 

1. Managing files 

2. Allocating file space 

3. Administering free space 

4. Controlling access to files 

5. Retrieving data for users 

 

1. Interact with set of system calls 

1. open, close, read, write, state, chown, chmod …  
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BUFFERING MECHANISM (1) 
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BUFFERING MECHANISM (2) 

Interact with block I/O device drivers to initiate data transfer to 

and from kernel. 
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PROCESS CONTROL SUBSYSTEM (1) 
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PROCESS CONTROL SUBSYSTEM (2) 

Responsible for process synchronization. 

 

Interprocess communication (IPC) 

Memory management 

Process scheduling 

 

Interact with set of system calls 

• fork, exec, exit, wait, brk, signal … 
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PROCESS CONTROL SUBSYSTEM (3) 

Memory management module 

• Control the allocation of memory 

 

Scheduler module 

• Allocate the CPU to processes 

 

Interprocess communication 

• There are several forms. 
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HARDWARE CONTROL (1) 
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HARDWARE CONTROL (2) 

Responsible for handling interrupts and for communicating with 

the machine. 
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AN OVERVIEW OF THE FILE SUBSYSTEM 

inode (index node) 

• a description of the disk layout of the file data and other information  

Prof.Prasad Sawant ,Assitiant Professor ,Dept. 

Of CS PCCCS Chichwad  



FILE ACCESS 

User 

File Descriptor 

Table 
File Table Inode Table 
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FILE SYSTEM LAYOUT 

boot block 

• Be needed to boot the system 

super block 

• Describes the state of a file system 

inode list 

• a list of inodes 

data block 

• contain file data and administrative data 

boot 

block 

super 

block 
inode list data blocks 
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USER AND KERNEL STACK FOR  

COPY PROGRAM 
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DATA STRUCTURES FOR PROCESSES 
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PROCESS TABLE 

State, ownership, event descriptor set 

u pointer (address) 
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U AREA 

• Pointer to the process table slot 

• System call parameters 

• File descriptor 

• Internal I/O information 

• Current directory and current root 

• Process and file size limits 
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REGION TABLE 

Text / Data 

Shared / Private 
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PROCESS STATES 

User mode 

• currently executing 

Kernel mode 

• currently executing 

Ready to run 

• soon as the scheduler chooses it. 

Sleeping 

• no longer continue executing 

• eg) waiting for I/O to complete. 
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PROCESS TRANSITION 
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MULTIPLE PROCESES SLEEPING ON A 

LOCK 

Time Proc A Proc B Proc C 

Buffer locked 
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Runs 
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Session Contents 

• Buffer Headers 

• Structure of the Buffer Pool 

• Scenarios for Retrieval of a Buffer 

• Reading and Writing Disk Blocks 

• Advantages & Disadvantages of the Buffer Cache 

 



THE BUFFER CACHE 

Kernel could read & write directly,but … 

• System response time & throughput  be poor 

Kernel minimize the frequency of disk access 

• By keeping a pool of internal data buffers 

Transmit data between application programs and the file 
system via the buffer cache. 

Transmit auxiliary data between higher-level kernel algorithms 
and the file system.  

• super block – free space available on the file system 

• inode – the layout of a file 
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BUFFER HEADERS 

Kernel allocates space  for many buffers, during system 
initialization 

A buffer consists of two parts 

• a memory array 

• buffer header 

Figure 3.1 Buffer Header 

 device num 

 block num 

status 

ptr to next buf on hash queue 

ptr to previous buf on 
hash queue 

ptr to next buf  on free list ptr to previous buf on 
free list 

ptr to data area 

Data in logical disk block  = 

Data in buffer 



device number 

• logical file system number 

block number 

• block number of the data on disk 

• Identify the buffer uniquely 

Status is a combination condition 

• The buffer is currently locked. 

• The buffer contains valid data. 

• “delayed-write” as condition 

• The kernel is currently reading or writing the contents of buffer to 
disk. 

• A process is currently waiting for the buffer to become free. 

 



STRUCTURE OF THE BUFFER POOL 

Kernel cache data in buffer pool according to a LRU 

A free list  of buffer  

• LRU order 

• doubly linked circular list 

• Kernel take a buffer from the head of the free list. 

• When returning a buffer, attaches the buffer to the tail. 
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Figure 3.2.  Free list of Buffers 

STRUCTURE OF THE BUFFER POOL 
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When the kernel accesses a  disk block 

• Organize buffer into separate queue  

• hashed as a function of the device and  block number 

• Every disk block exists only on hash queue and only once on the queue 

Buffer is always on a hash queue, but is may or may not be on the free list 
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SCENARIOS FOR RETRIEVAL OF A 
BUFFER 

 Algorithm determine logical device # and block # 

 The algorithms for reading and writing disk blocks use the algorithm getblk 

 Kernel finds the block on its hash queue 

 buffer is free. 

 buffer is currently busy. 

 Kernel cannot find the block on the hash queue 

 kernel allocates a buffer from the  free list. 

 In attempting to allocate a buffer from the free list, finds a buffer on the 

free list that has been marked “delayed write”. 

 free list of buffers is empty. 

 



Algorithm getblk 

Input: file system number 

          block number  

Output: locked buffer that can now be used for block 

{ 

   while(buffer not found)  

   { 

      if(block in hash queue)  

      { 

         if(buffer busy)    /* scenario 5 */ 

         { 

             sleep(event buffer becomes free); 

             continue;   /* back to while loop */ 

          } 

          make buffer busy;     /* scenario 1 */ 

          remove buffer from free list; 

          return buffer; 

      } 

       

else /* block not on hash queue */ 

      { 

          if(there are no buffers on free list) 

          {  /*scenario 4 */ 

             sleep(event any buffer becomes free); 

             continue; /* back to while loop */ 

          } 

          remove buffer from free list; 

          if(buffer marked for delayed write)  

          {                         /* scenario 3 */ 

             asynchronous write buffer to disk; 

             continue;          /* back to  while loop */ 

          } 

          /* scenario 2 – found a free buffer */ 

          remove buffer from old hash queue; 

          put buffer onto new hash queue; 

          return buffer; 

         } 

     } 

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad  



struct  buffer_head * getblk(kdev_t dev, int block, int size) 

{ 

 struct buffer_head * bh; 

 int isize; 

repeat: bh = get_hash_table(dev, block, size);      

              if (bh) { 

  if (!buffer_dirty(bh)) {   

   bh->b_flushtime = 0; 

  } 

  return bh; 

 } 

 isize = BUFSIZE_INDEX(size); 

 

get_free: bh = free_list[isize]; 

 if (!bh)    

  goto refill; 

 remove_from_free_list(bh); 

 

 init_buffer(bh, dev, block, end_buffer_io_sync, NULL);  

 bh->b_state=0;  

 insert_into_queues(bh); 

 return bh; 

 

refill: refill_freelist(size);                  

 if (!find_buffer(dev,block,size))  

  goto get_free;                      

 goto repeat; 

} 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   FIRST SCENARIO IN FINDING A BUFFER: 

    BUFFER ON HASH QUEUE (A) 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   FIRST SCENARIO IN FINDING A BUFFER: 

    BUFFER ON HASH QUEUE (B) 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
 ALGORITHM FOR RELEASING A BUFFER 

Algorithm  brelse 

Input: locked  buffer 

{ 

 wakeup all process: event, waiting for any buffer to become free; 

 wakeup all process: event, waiting for this buffer to become free; 

 raise processor execution level to block interrupts; 

 if (buffer contents valid and buffer not old) 

  enqueue buffer at end of free list 

 else 

  enqueue buffer at beginning of free list 

 lower processor execution level to allow interrupts; 

 unlock(buffer); 

} 

 



SCENARIOS FOR RETRIEVAL OF A BUFFER 
 ALGORITHM FOR RELEASING A BUFFER 
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When manipulating linked lists, block the disk interrupt 

• Because handling the interrupt could corrupt the pointers 



Algorithm getblk 

Input: file system number 

          block number  

Output: locked buffer that can now be used for block 

{ 

   while(buffer not found)  

   { 

      if(block in hash queue)  

      { 

         if(buffer busy)    /* scenario 5 */ 

         { 

             sleep(event buffer becomes free); 

             continue;   /* back to while loop */ 

          } 

          make buffer busy;     /* scenario 1 */ 

          remove buffer from free list; 

          return buffer; 

      } 

       

else /* block not on hash queue */ 

      { 

          if(there are no buffers on free list) 

          {  /*scenario 4 */ 

             sleep(event any buffer becomes free); 

             continue; /* back to while loop */ 

          } 

          remove buffer from free list; 

          if(buffer marked for delayed write)  

          {                         /* scenario 3 */ 

             asynchronous write buffer to disk; 

             continue;          /* back to  while loop */ 

          } 

          /* scenario 2 – found a free buffer */ 

          remove buffer from old hash queue; 

          put buffer onto new hash queue; 

          return buffer; 

         } 

     } 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   SECOND SCENARIO FOR BUFFER ALLOCATION (A) 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   SECOND SCENARIO FOR BUFFER ALLOCATION (B) 
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Algorithm getblk 

Input: file system number 

          block number  

Output: locked buffer that can now be used for block 

{ 

   while(buffer not found)  

   { 

      if(block in hash queue)  

      { 

         if(buffer busy)    /* scenario 5 */ 

         { 

             sleep(event buffer becomes free); 

             continue;   /* back to while loop */ 

          } 

          make buffer busy;     /* scenario 1 */ 

          remove buffer from free list; 

          return buffer; 

      } 

       

else /* block not on hash queue */ 

      { 

          if(there are no buffers on free list) 

          {  /*scenario 4 */ 

             sleep(event any buffer becomes free); 

             continue; /* back to while loop */ 

          } 

          remove buffer from free list; 

          if(buffer marked for delayed write)  

          {                         /* scenario 3 */ 

             asynchronous write buffer to disk; 

             continue;          /* back to  while loop */ 

          } 

          /* scenario 2 – found a free buffer */ 

          remove buffer from old hash queue; 

          put buffer onto new hash queue; 

          return buffer; 

         } 

     } 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   THIRD SCENARIO FOR BUFFER ALLOCATION (A) 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   THIRD SCENARIO FOR BUFFER ALLOCATION (B) 

 5 17 

10 50 98 

99 35  3 

28  64 

97 

blkno 0 mod 4 

blkno 1 mod 4 

blkno 2 mod 4 

blkno 3 mod 4 

Hash queue headers 

freelist header 

(b) Writing Blocks 3, 5, Reassign  4 to 18 

Writing 

Writing 

 18 



Algorithm getblk 

Input: file system number 

          block number  

Output: locked buffer that can now be used for block 

{ 

   while(buffer not found)  

   { 

      if(block in hash queue)  

      { 

         if(buffer busy)    /* scenario 5 */ 

         { 

             sleep(event buffer becomes free); 

             continue;   /* back to while loop */ 

          } 

          make buffer busy;     /* scenario 1 */ 

          remove buffer from free list; 

          return buffer; 

      } 

       

else /* block not on hash queue */ 

      { 

          if( there are no buffers on free list) 

          {  /*scenario 4 */ 

             sleep(event any buffer becomes free); 

             continue; /* back to while loop */ 

          } 

          remove buffer from free list; 

          if(buffer marked for delayed write)  

          {                         /* scenario 3 */ 

             asynchronous write buffer to disk; 

             continue;          /* back to  while loop */ 

          } 

          /* scenario 2 – found a free buffer */ 

          remove buffer from old hash queue; 

          put buffer onto new hash queue; 

          return buffer; 

         } 

     } 
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SCENARIOS FOR RETRIEVAL OF A BUFFER 
   FOURTH SCENARIO FOR ALLOCATING BUFFER 
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Figure 3.10.  Race for Free Buffer 
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Algorithm getblk 

Input: file system number 

          block number  

Output: locked buffer that can now be used for block 

{ 

   while(buffer not found)  

   { 

      if(block in hash queue)  

      { 

         if(buffer busy)    /* scenario 5 */ 

         { 

             sleep(event buffer becomes free); 

             continue;   /* back to while loop */ 

          } 

          make buffer busy;     /* scenario 1 */ 

          remove buffer from free list; 

          return buffer; 

      } 

       

else /* block not on hash queue */ 

      { 

          if(there are no buffers on free list) 

          {  /*scenario 4 */ 

             sleep(event any buffer becomes free); 

             continue; /* back to while loop */ 

          } 

          remove buffer from free list; 

          if(buffer marked for delayed write)  

          {                         /* scenario 3 */ 

             asynchronous write buffer to disk; 

             continue;          /* back to  while loop */ 

          } 

          /* scenario 2 – found a free buffer */ 

          remove buffer from old hash queue; 

          put buffer onto new hash queue; 

          return buffer; 

         } 

     } 

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad  
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Figure 3.12 Race for a Locked Buffer 
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READING AND WRITING 
 DISK BLOCKS 

To read a disk block 

• A process uses algorithm getblk to search for a disk block. 

• In the cache 

• The kernel can return a disk block without physically reading the 
block from the disk. 

• Not in the cache 

• The kernel calls the disk driver to “schedule” a read 
request. 

• The kernel goes to sleep awaiting the event the I/O 
completes. 

• After I/O, the disk controller interrupts the processor. 

• The disk interrupt handler awakens the sleeping process.  

 

 



READING AND WRITING  DISK BLOCKS 
 ALGORITHM FOR READING A DISK BLOCK 

Algorithm bread  /*block read */ 

Input: file system block number 

Output: buffer containing data 

{ 

 get buffer for block (algorithm getblk); 

 if (buffer data valid) 

  return buffer; 

 initiate disk read; 

 sleep(event disk read complete); 

 return (buffer); 

} 



To read block ahead 

• The kernel checks if the first block is in the cache or not. 

• If  the block in not in the cache, it invokes the disk driver to read the 
block. 

• If the second block is not in the buffer cache, the kernel instructs the 
disk driver to read it asynchronously. 

• The process goes to sleep  awaiting the event that the I/O is complete 
on the first block. 

• When awakening, the process returns the buffer for the first block. 

• When the I/O for the second block does complete,  the disk controller 
interrupts the system. 

• Release buffer. 

 

 READING AND WRITING 
 DISK BLOCKS 



READING AND WRITING  DISK BLOCKS 
 ALGORITHM FOR BLOCK READ AHEAD 

Algorithm breada  /* block read and read ahead */ 

Input: (1) file system block number for immediate read 

          (2) file system block number for asynchronous read 

Output: buffer containing data for immediate read 

{ 

     if (first block not in cache) 

     { 

          get buffer for first block (getblk); 

 if (buffer data not valid) 

      initiate disk read; 

     } 

     if (second block not in cache) 

     { 

          get buffer for second block(getblk); 

          if (buffer data valid) 

      release buffer( brelse) 

          else 

               initiate disk read; 

     } 

     if (first block was originally in cache) 

     { 

          read first block (bread); 

          return buffer; 

     } 

     sleep(event first buffer contains valid data); 

     return buffer; 

} 



To write a disk block 

• Kernel informs the disk driver that it has a buffer whose contents 

should be output. 

• Disk driver schedules the block for I/O. 

• If the write is synchronous, the calling process goes the sleep 

awaiting I/O completion and releases the buffer when it awakens. 

• If the write is asynchronous, the kernel starts the disk write,but not 

wait for write to complete.  

• The kernel will release buffer when I/O completes 

A delayed write vs. an asynchronous write 

READING AND WRITING 
 DISK BLOCKS 



READING AND WRITING  DISK BLOCKS 
 ALGORITHM FOR WRITING A DISK BLOCK 

Algorithm bwrite /* block write */ 

Input: buffer 

Output: none 

{ 

 initiate disk write; 

 if (I/O synchronous) 

 { 

  sleep(event I/O complete); 

  release buffer(algorithm brelse); 

 } 

 else if (buffer marked for delayed write) 

  mark buffer to put at head of free list; 

} 


