
ADVANCED OPERATING SYSTEMS

 UNIT 2 FILE AND DIRECTORY I/O

BY

MR.PRASAD SAWANT

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

OUT LINE OF SESSION

1. Buffer headers

2. structure of the buffer pool

3. scenarios for retrieval of a buffer

4. reading and writing disk blocks

5. Inodes

6. structure of regular file

7. Open

8. Read

9. Write

10. Lseek

11. Pipes

12. close

13. dup

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS

PCCCS Chichwad

ARCHITECTURE OF THE UNIX

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS

PCCCS Chichwad

LIBRARIES (1)

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

LIBRARIES (2)
1. Make system calls look like ordinary function

call.

2. Map these function call to the primitives needed

to enter the OS.

FILE SUBSYSTEM (1)

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

FILE SUBSYSTEM (2)

1. Managing files

2. Allocating file space

3. Administering free space

4. Controlling access to files

5. Retrieving data for users

1. Interact with set of system calls

1. open, close, read, write, state, chown, chmod …

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

BUFFERING MECHANISM (1)

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

BUFFERING MECHANISM (2)

Interact with block I/O device drivers to initiate data transfer to

and from kernel.

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS

PCCCS Chichwad

PROCESS CONTROL SUBSYSTEM (1)

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

PROCESS CONTROL SUBSYSTEM (2)

Responsible for process synchronization.

Interprocess communication (IPC)

Memory management

Process scheduling

Interact with set of system calls

• fork, exec, exit, wait, brk, signal …

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

PROCESS CONTROL SUBSYSTEM (3)

Memory management module

• Control the allocation of memory

Scheduler module

• Allocate the CPU to processes

Interprocess communication

• There are several forms.

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS

PCCCS Chichwad

HARDWARE CONTROL (1)

libraries

system call interface

file subsystem

 process

 control

 subsystem

inter-process

communication

scheduler

memory

management

hardware control

hardware

buffer cache

device drivers

character block

user Level

kernel Level

kernel Level

hardware Level

trap

user programs

HARDWARE CONTROL (2)

Responsible for handling interrupts and for communicating with

the machine.

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

AN OVERVIEW OF THE FILE SUBSYSTEM

inode (index node)

• a description of the disk layout of the file data and other information

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

FILE ACCESS

User

File Descriptor

Table
File Table Inode Table

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

FILE SYSTEM LAYOUT

boot block

• Be needed to boot the system

super block

• Describes the state of a file system

inode list

• a list of inodes

data block

• contain file data and administrative data

boot

block

super

block
inode list data blocks

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

USER AND KERNEL STACK FOR

COPY PROGRAM

Addr of Frame 2

Ret addr after write call

Local

Vars

not

shown

params to

write

new buffer

count

Addr of Frame 1

Ret addr after copy call

Local

Vars

count

params to

copy

old

new

Addr of Frame 0

Ret addr after main call

Local

Vars

fdold

fdnew

params to

main

argc

argv

user stack

Addr of Frame 1

Ret addr after func2 call

Local

Vars

parms to kernel func2

Addr of Frame 0

Ret addr after func1 call

Local

Vars

params to kernel func1

kernel stack

frame 3

call write()

frame 2

call copy()

frame 1

call main()

frame 3

frame 2

call func2()

frame 1

call func1()

frame 0 start frame 0 system call interface

Direction of

stack growth

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS

PCCCS Chichwad

DATA STRUCTURES FOR PROCESSES

u area

main memory

region table
per process

region table

process table

PROCESS TABLE

State, ownership, event descriptor set

u pointer (address)

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

U AREA

• Pointer to the process table slot

• System call parameters

• File descriptor

• Internal I/O information

• Current directory and current root

• Process and file size limits

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

REGION TABLE

Text / Data

Shared / Private

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

PROCESS STATES

User mode

• currently executing

Kernel mode

• currently executing

Ready to run

• soon as the scheduler chooses it.

Sleeping

• no longer continue executing

• eg) waiting for I/O to complete.

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

PROCESS TRANSITION

1

2

4 3

kernel

running

user

running

context switch

permissible

ready to run

return sys call

or interrupt

interrupt,

interrupt return

schedule

process
sleep

wakeup

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

MULTIPLE PROCESES SLEEPING ON A

LOCK

Time Proc A Proc B Proc C

Buffer locked

Sleeps
Buffer locked

Sleeps
Buffer locked

Sleeps

Ready to run Ready to run Ready to run

Runs

Buffer unlocked

Lock buffer

Sleep for arbitrary reason

Runs

Buffer loced

Sleeps
Wakes up

Unlocks Buffer

Wake up all sleeping procs

Context switch, eventually Runs

Ready to run Ready to run

Runs

Buffer loced

Sleeps

Buffer is unlocked Wake up all sleeping procs

Prof.Prasad Sawant ,Assitiant Professor ,Dept.

Of CS PCCCS Chichwad

Session Contents

• Buffer Headers

• Structure of the Buffer Pool

• Scenarios for Retrieval of a Buffer

• Reading and Writing Disk Blocks

• Advantages & Disadvantages of the Buffer Cache

THE BUFFER CACHE

Kernel could read & write directly,but …

• System response time & throughput be poor

Kernel minimize the frequency of disk access

• By keeping a pool of internal data buffers

Transmit data between application programs and the file
system via the buffer cache.

Transmit auxiliary data between higher-level kernel algorithms
and the file system.

• super block – free space available on the file system

• inode – the layout of a file

 libraries

User level

Kernel level

 User programs

Hardware

Kernel level

Hardware level

trap

 system call interface

 File subsystem

 Buffer cache

character block

 Device drivers

 Hardware control

inter-process

communication

scheduler

memory

management

Process

control

subsystem

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

BUFFER HEADERS

Kernel allocates space for many buffers, during system
initialization

A buffer consists of two parts

• a memory array

• buffer header

Figure 3.1 Buffer Header

 device num

 block num

status

ptr to next buf on hash queue

ptr to previous buf on
hash queue

ptr to next buf on free list ptr to previous buf on
free list

ptr to data area

Data in logical disk block =

Data in buffer

device number

• logical file system number

block number

• block number of the data on disk

• Identify the buffer uniquely

Status is a combination condition

• The buffer is currently locked.

• The buffer contains valid data.

• “delayed-write” as condition

• The kernel is currently reading or writing the contents of buffer to
disk.

• A process is currently waiting for the buffer to become free.

STRUCTURE OF THE BUFFER POOL

Kernel cache data in buffer pool according to a LRU

A free list of buffer

• LRU order

• doubly linked circular list

• Kernel take a buffer from the head of the free list.

• When returning a buffer, attaches the buffer to the tail.

 free list

 head

 buf 1

 buf 2

 buf n

forward ptrs

back ptrs

Recently used

 free list

 head

 buf 1

 buf 2

 buf n

forward ptrs

back ptrs

Figure 3.2. Free list of Buffers

STRUCTURE OF THE BUFFER POOL

 free list

 head

 buf 2

 buf n

forward ptrs

back ptrs

When the kernel accesses a disk block

• Organize buffer into separate queue

• hashed as a function of the device and block number

• Every disk block exists only on hash queue and only once on the queue

Buffer is always on a hash queue, but is may or may not be on the free list

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

Figure 3.3 Buffers on the Hash Queues

STRUCTURE OF THE BUFFER POOL

Block number 0

module 4

SCENARIOS FOR RETRIEVAL OF A
BUFFER

 Algorithm determine logical device # and block #

 The algorithms for reading and writing disk blocks use the algorithm getblk

 Kernel finds the block on its hash queue

 buffer is free.

 buffer is currently busy.

 Kernel cannot find the block on the hash queue

 kernel allocates a buffer from the free list.

 In attempting to allocate a buffer from the free list, finds a buffer on the

free list that has been marked “delayed write”.

 free list of buffers is empty.

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5 */

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

struct buffer_head * getblk(kdev_t dev, int block, int size)

{

 struct buffer_head * bh;

 int isize;

repeat: bh = get_hash_table(dev, block, size);

 if (bh) {

 if (!buffer_dirty(bh)) {

 bh->b_flushtime = 0;

 }

 return bh;

 }

 isize = BUFSIZE_INDEX(size);

get_free: bh = free_list[isize];

 if (!bh)

 goto refill;

 remove_from_free_list(bh);

 init_buffer(bh, dev, block, end_buffer_io_sync, NULL);

 bh->b_state=0;

 insert_into_queues(bh);

 return bh;

refill: refill_freelist(size);

 if (!find_buffer(dev,block,size))

 goto get_free;

 goto repeat;

}

L
 I N

 U
 X

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIRST SCENARIO IN FINDING A BUFFER:

 BUFFER ON HASH QUEUE (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 4 on First Hash Queue

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIRST SCENARIO IN FINDING A BUFFER:

 BUFFER ON HASH QUEUE (B)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Remove Block 4 from Free list

SCENARIOS FOR RETRIEVAL OF A BUFFER
 ALGORITHM FOR RELEASING A BUFFER

Algorithm brelse

Input: locked buffer

{

 wakeup all process: event, waiting for any buffer to become free;

 wakeup all process: event, waiting for this buffer to become free;

 raise processor execution level to block interrupts;

 if (buffer contents valid and buffer not old)

 enqueue buffer at end of free list

 else

 enqueue buffer at beginning of free list

 lower processor execution level to allow interrupts;

 unlock(buffer);

}

SCENARIOS FOR RETRIEVAL OF A BUFFER
 ALGORITHM FOR RELEASING A BUFFER

Higher Priority

Lower Priority

Machine Errors

 Clock

Disk

Network Devices

Terminals

Software Interrupts

Typical Interrupt Levels

When manipulating linked lists, block the disk interrupt

• Because handling the interrupt could corrupt the pointers

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5 */

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SCENARIOS FOR RETRIEVAL OF A BUFFER
 SECOND SCENARIO FOR BUFFER ALLOCATION (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 18 – Not in Cache

SCENARIOS FOR RETRIEVAL OF A BUFFER
 SECOND SCENARIO FOR BUFFER ALLOCATION (B)

 4

 5 17

10 50 98

99 35

 18

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(b) Remove First Block from Free list, Assign to 18

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5 */

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SCENARIOS FOR RETRIEVAL OF A BUFFER
 THIRD SCENARIO FOR BUFFER ALLOCATION (A)

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(a) Search for Block 18, Delayed Write Blocks on Free List

delay

delay

SCENARIOS FOR RETRIEVAL OF A BUFFER
 THIRD SCENARIO FOR BUFFER ALLOCATION (B)

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

(b) Writing Blocks 3, 5, Reassign 4 to 18

Writing

Writing

 18

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5 */

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FOURTH SCENARIO FOR ALLOCATING BUFFER

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

Search for Block 18, Empty Free list

Figure 3.10. Race for Free Buffer

 Somebody frees a buffer: brelse

Process A Process B

Cannot find block b

on hash queue

No buffers on free list

Sleep

Cannot find block b

 on hash queue

Sleep

No buffers on free list

Takes buffer from free list

Assign to block b

SCENARIOS FOR RETRIEVAL OF A BUFFER
 RACE FOR FREE BUFFER

Algorithm getblk

Input: file system number

 block number

Output: locked buffer that can now be used for block

{

 while(buffer not found)

 {

 if(block in hash queue)

 {

 if(buffer busy) /* scenario 5 */

 {

 sleep(event buffer becomes free);

 continue; /* back to while loop */

 }

 make buffer busy; /* scenario 1 */

 remove buffer from free list;

 return buffer;

 }

else /* block not on hash queue */

 {

 if(there are no buffers on free list)

 { /*scenario 4 */

 sleep(event any buffer becomes free);

 continue; /* back to while loop */

 }

 remove buffer from free list;

 if(buffer marked for delayed write)

 { /* scenario 3 */

 asynchronous write buffer to disk;

 continue; /* back to while loop */

 }

 /* scenario 2 – found a free buffer */

 remove buffer from old hash queue;

 put buffer onto new hash queue;

 return buffer;

 }

 }

} Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

 4

 5 17

10 50 98

99 35 3

28 64

97

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4

Hash queue headers

freelist header

 Search for Block 99, Block busy

busy

SCENARIOS FOR RETRIEVAL OF A BUFFER
 FIFTH SCENARIO FOR BUFFER ALLOCATION

Figure 3.12 Race for a Locked Buffer

Time

Process A Process B Process C

Allocate buffer

 to block b

Lock buffer

Initiate I/O

Sleep until I/O done

I/O done, wake up

brelse(): wake up others

Find block b

on hash queue

Buffer locked, sleep

Buffer does not contain

 block b

Start search again

Sleep waiting for

 any free buffer

 (scenario 4)

Get buffer previously

assigned to block b

Reassign buffer to block b’

SCENARIOS FOR RETRIEVAL OF A BUFFER
 RACE FOR A LOCKED BUFFER

READING AND WRITING
 DISK BLOCKS

To read a disk block

• A process uses algorithm getblk to search for a disk block.

• In the cache

• The kernel can return a disk block without physically reading the
block from the disk.

• Not in the cache

• The kernel calls the disk driver to “schedule” a read
request.

• The kernel goes to sleep awaiting the event the I/O
completes.

• After I/O, the disk controller interrupts the processor.

• The disk interrupt handler awakens the sleeping process.

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR READING A DISK BLOCK

Algorithm bread /*block read */

Input: file system block number

Output: buffer containing data

{

 get buffer for block (algorithm getblk);

 if (buffer data valid)

 return buffer;

 initiate disk read;

 sleep(event disk read complete);

 return (buffer);

}

To read block ahead

• The kernel checks if the first block is in the cache or not.

• If the block in not in the cache, it invokes the disk driver to read the
block.

• If the second block is not in the buffer cache, the kernel instructs the
disk driver to read it asynchronously.

• The process goes to sleep awaiting the event that the I/O is complete
on the first block.

• When awakening, the process returns the buffer for the first block.

• When the I/O for the second block does complete, the disk controller
interrupts the system.

• Release buffer.

 READING AND WRITING
 DISK BLOCKS

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR BLOCK READ AHEAD

Algorithm breada /* block read and read ahead */

Input: (1) file system block number for immediate read

 (2) file system block number for asynchronous read

Output: buffer containing data for immediate read

{

 if (first block not in cache)

 {

 get buffer for first block (getblk);

 if (buffer data not valid)

 initiate disk read;

 }

 if (second block not in cache)

 {

 get buffer for second block(getblk);

 if (buffer data valid)

 release buffer(brelse)

 else

 initiate disk read;

 }

 if (first block was originally in cache)

 {

 read first block (bread);

 return buffer;

 }

 sleep(event first buffer contains valid data);

 return buffer;

}

To write a disk block

• Kernel informs the disk driver that it has a buffer whose contents

should be output.

• Disk driver schedules the block for I/O.

• If the write is synchronous, the calling process goes the sleep

awaiting I/O completion and releases the buffer when it awakens.

• If the write is asynchronous, the kernel starts the disk write,but not

wait for write to complete.

• The kernel will release buffer when I/O completes

A delayed write vs. an asynchronous write

READING AND WRITING
 DISK BLOCKS

READING AND WRITING DISK BLOCKS
 ALGORITHM FOR WRITING A DISK BLOCK

Algorithm bwrite /* block write */

Input: buffer

Output: none

{

 initiate disk write;

 if (I/O synchronous)

 {

 sleep(event I/O complete);

 release buffer(algorithm brelse);

 }

 else if (buffer marked for delayed write)

 mark buffer to put at head of free list;

}

