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PROCESS STATES & TRANSITIONS 

Process State Transition 

• No process can preempt another 

process executing in the kernel. 

• The process has no control over 

those state transitions. 

• A process can make system calls 

to move from state “user running” 

to state “kernel running”. 

• A process can exit of its own 

volition, but external events may 

dictate that it exits without 

explicitly invoking the exit system 

call. 
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PROCESS TABLE ENTRY & U AREA 

PTE & U Area 

• Kernel data structures that describe the state of a process 

Process Table Entry 

• Always be accessible to the kernel 

• Fields 

• Process state 

• Pointers to process and its u area – context switch, swapping 

• Process size 

• User ID 

• Process ID 

• Event descriptor table 

• Scheduling parameters 

• Signal enumerated fields 

• Timers 
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PROCESS TABLE ENTRY & U AREA 

U Area 

• Need to be accessible only to the running process. 
• The kernel alocates space for the u area only when creating a 

process. 
• Fields 

• Pointer to process table entry 
• Real and effective user IDs 
• Timers – time the process spent executing 
• An array for the process to react to signals 
• Control terminal – if one exists 
• Error field, return value – system call 
• I/O parameters 
• Current directory, current root 
• User file descriptor table 
• Limits – process, file 
• Permission – used on creating the process 
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 LAYOUT OF SYSTEM MEMORY 

Problem of Physical Address Space 

• A Process on the UNIX system consists of three logical sections : 
text, data, and stack 

• If the machine were to treat the generated addresses as address 
locations in physical memory, it would be impossible for two 
processes to execute concurrently if their set of generated addresses 
overlapped. 

Virtual Address Space 

• The machine’s memory management unit translates the virtual 
addresses generated by the compiler into address locations in 
physical memory. 

• The compiler does not have to know where in memory the kernel 
later load the program for execution. 
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REGIONS 

Regions 

• A contiguous area of the virtual address space of a process 

• It can be treated as a distinct object to be shared/protected. 

• Thus text, data, and stack usually form separate regions of a process. – 
Several processes can share a region. 

Region Table 

• It contains the information to determine where its contents are located 
in physical memory. 

• Each pregion(Per Process Region Table) entry contains: 

• Pointer to a region table entry 

• Starting virtual address in the process 

• Permission field : read-only, read-write or read-execute 

• Several processes can share parts of their address space via a region. 



9 

REGIONS 

Processes and Regions 
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PAGES & PAGE TABLES 

Page 

• In a memory management architecture based on pages, the memory 

management hardware divides physical memory into a set of equal-sized blocks 

called pages. (512~4K bytes) 

• Memory location can be addressed by a(page number, byte offset in page) 

• Example: 

• 232 bytes of physical memory 

• Page size : 1K bytes (222 pages of physical memory) 
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PAGES & PAGE TABLES 

Page Table 

• When the kernel assigns physical pages of memory to a region, it need 
not assign the pages contiguously or in a particular order. 

• The region table entry contains a pointer to a table of physical page 
numbers called a page table. 

• The logical page number is the index into an array of physical page 
numbers. 

Address Translation 

• Modern machines use a variety of hardware registers and caches to 
speed up the address translation procedure, because the memory 
references and address calculations would otherwise be too slow. 

• Such operations are machine dependent and vary from one 
implementation to another. 
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PAGES & PAGE TABLES 

Mapping Virtual Addresses to Physical Addresses 
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LAYOUT OF THE KERNEL 

Layout of the Kernel 

• Although the kernel executes in the context of a process, the virtual 
memory mapping associated with the kernel is independent of all 
processes. 

• The code and data for the kernel reside in the system permanently, 
and all processes share it. 

• The kernel page tables are analogous to the page tables associated 
with a process. 

• In many machines, the virtual address space of a process is divided 
into several classes, including system and user, and each class has 
its own page tables. 

• When executing in kernel mode, the system permits access to kernel 
addresses, but it prohibits such access when executing in user mode. 
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LAYOUT OF THE KERNEL 

Changing Mode from User to Kernel 
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THE U AREA 

Memory Map of U Area in the Kernel 

• The kernel access u area as if there were only one u area in the 

system, that of the running process. 

• When compiling the operating system, the loader assigns the 

variable u area a fixed virtual address. 

• Example: 

• u area is 4K bytes long       

at Virtual Address 2M 

• 1st – kernel text 

• 2nd – kernel data 

• 3rd – u area for process D 
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THE CONTEXT OF A PROCESS 

The Context of a Process 

• It consists of its (user) address space, hardware registers and kernel data structures 

that relate to the process. 

• Formally, the union of its user-level context, register context, and system-level 

context. 

User-level Context 

• Process text, data, user stack, and shared memory 

• Parts of the virtual address space of a process periodically do not reside in main 

memory for swapping or paging. 

Register Context 

• Program counter, process status register, stack pointer, general-purpose registers 
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THE CONTEXT OF A PROCESS 

System-level Context 

• Static part : process table entry, u area, region / page tables 

• Dynamic part : kernel stack, system-level context layer (including register context) 

• The kernel pushes a context layer when an interrupt occurs, when a process makes a 

system call, or when a process does a context switch. 

Context Layer 

• A process runs within its context or, more precisely, within its current context layer. 

• The number of context layers is bounded by the number of interrupt levels the 

machine supports. 

• Ex) 5 for interrupt level + 1 for system call + 1 for user-level  => 7 context layers are 

sufficient to hold all context layers. 



18 

THE CONTEXT OF A PROCESS 

Components of the Context of a Process 
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INTERRUPTS & EXCEPTIONS 

Interrupt / Exception Handling 

• The system is responsible for handling interrupts: 

• Results from hardware (such as the clock or peripheral devices) 

• Programmed interrupts (software interrupts) 

• Exceptions (such as page faults) 

How the Kernel Handles Interrupts 

• Some machines do part of the sequence of operations in hardware or micro-

code to get better performance than if all operation were done by software. 

• Algorithm for handling interrupts 
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INTERRUPTS & EXCEPTIONS 

Interrupt Vector 

• It contains the address of the interrupt 

handler for the corresponding interrupt 

source and a way of finding a parameter 

for the interrupt handler. 

 

 

 

 

Example of Interrupts 

system call -> disk intr. ->clock intr. 
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SYSTEM CALL INTERFACE 

System Call 

• The library functions typically invoke an instruction that changes the process execution 

mode to kernel mode and cause the kernel to start executing code for system calls. 

• The system call interface is a special case of an interrupt handler. (operating system 

trap) 

When the kernel returns 
from the operating system 
trap to user mode, it 
returns to the library 
instruction after the trap. 
The library interprets the 
return values from the 
kernel and returns a value 
to the user program. 
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SYSTEM CALL INTERFACE 

Example: Create System Call 

Generated Code 
for Motorola 68000 

Stack Configuration 
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CONTEXT SWITCH 

Context Switch Mechanism 

• The kernel permits it under four circumstances: 

• When a process puts itself to sleep 

• When it exits 

• When it returns from a system call to user mode 

• When it returns to user mode after interrupt handling 

• The kernel ensures integrity and consistency of internal data structures by prohibiting 

arbitrary context switches. 

• The procedure for a context switch is similar to the procedures for handling 

interrupts and system calls, except that the kernel restores the context layer of a 

different process instead of the previous context layer of the same process. 

Steps for a Context Switch 
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CONTEXT SWITCH 

Doing a Context Switch 

• The context switch code is usually the most difficult to understand in the 

operating system, because function calls give the appearance of not 

returning on some occasions and materializing from nowhere on others. 

• Scenario for context switch 

• The function save_context  saves information about the context of the 

running process and returns the value 1. 

• Among other pieces of information, the kernel saves the value of the current 

program counter (in the function save_context) and the value 0, to be used 

later as the return value. 
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CONTEXT SWITCH 

Saving Context for Abortive Returns 

• The algorithm to save a context is setjmp and one to restore the context is 

longjmp. 

• It stores/resumes the context in/from the u area. 

Copying Data between System & User Address Space 

• The kernel must ascertain that the address being read or written is 

accessible as if it has been executing in user mode. 

• Therefore, copying data between kernel space and user space is an 

expensive proposition, requiring more than one instruction. 

• Sample) Moving data from user to system space on a VAX 
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PROCESS SYSTEM CALLS 

System Calls Dealing with 
Memory Management 

 

 

System Calls Dealing with 
Synchronization 

Miscellaneous 

Fork Exec Brk exit wait signal kill setpgrp setid 

dupreg 

Attachreg 

Detachreg 

Allocreg 

Growreg 

Loadreg 

Mapreg 

 

 

growreg detachreg 



PROCESS CREATION 

Fork 

The syntax for the fork system call 

• Pid = fork(); 

• In the parent process, pid is the child process ID 

• In the child process, pid is 0 

Sequence of operations for fork. 

• 1. It allocates a slot in the process table for the new process 

• 2. It assigns a unique ID number to the child process 

• 3. It makes a logical copy of the context of the parent process.  

• Sometimes increment a region reference count 

• 4. It increments file and inode table counters for files associated with the process 

• 5. It returns the ID number of the child to the parent process, and a 0 value to the child process. 

 



Algorithm fork 

 

Input : none 

Output : to parent process, child PID number 

        to child process, 0 

{ 

 check for available kernel resources; 

 get free proc table slot, unique PID number; 

 check that user not running too many processes; 

       

      mark child state “being created;” 

 copy data from parent proc table slot to new child slot; 

  

      increment counts on current directory inode and changed root (if applicable) 

 increment open file counts in file table; 

  

      make copy of parent context (u area, text, data, stack) in memory; 

 push dummy system level context layer onto child system level context; 

  dummy context contains data allowing child process to recognize itself,  

               and start running from here when scheduled; 

  

      if( executing process is parent process ) 

 { 

  change child state to “ready to run;” 

  return( child ID );  /* from system to user */ 

 } 

 else 

 {  

  initialize u area timing fields; 

  return( 0 );   /* to user */ 

 } 

} 

  



1. On swapping system, it need space either in memory or on disk to hold the 

child process; on paging system, it has to allocate memory for auxiliary tables 

such as page tables. 

 

2. ID number for the new process,  one greater than the most recently assigned 

ID number. 

 

3. Limit on the number of processes 

         the last remaining slot 

        Superuser take drastic action and spawn a process that forces  other 

processes to exit 



1. the child “inherit” the parent process real and effective user ID, parent 

process group, parent nice value 

        the kernel assign the parent process ID field in the child slot 

        putting the child in the process tree structure 

        initializes various scheduling parameters ( initial priority value,  initial 

CPU usage, and other timing fields )     

        the initial state of the process is “being created” 

         

Process Creation 
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1. The child process inherits the current directory of the parent process. The 

number of processes that currently access the directory increases by 1, kernel 

increments its inode reference count. 

 

2. If the parent process or one of its ancestors had ever executed the chroot 

system call, the child process inherits the changed root and increments its 

inode reference count 

 

3. The effect of fork is similar to that of dup vis-à-vis open files 

• difference   

1. Process 
Creation 



Static portion 

• It allocates memory for the child process u area, regions, auxiliary page tables, 
duplicates every region in the parent process using dupreg, and attaches every 
region to the child process using attachreg 

• Difference -The u area contains a pointer to its process table slot. 

 

Dynamic portion 

• The kernel copies the parent context layer 1, containing the user saved register 
context and the kernel stack frame of the fork system call 

• The kernel then creates a dummy context layer 2 for the child process, containing 
the saved register context for context layer 1. It sets the program counter and 
other registers in the saved register context so that it can “restore” the child 
context, even though it had never executed before, and so that the child process 
can recognize itself as the child when it run  

 

 

1. Process 
Creation 



Figure 7.4 – example of sharing file access across a fork system call 

#include<fcntl.h>     fork();   

Int fdrd, fdwt;     /* both procs execute same code */ 

Char c;      rdwrt(); 

      exit(0); 

Main(argc, argv)              } 

    int argc;              rdwrt() 

    char *argv[];              {   

{                for(;;) 

    if ( argc != 3 )     { 

 exit(1);             if( read( fdrd, &c, 1 ) != 1 ) 

    if(( fdrd = open( argv[1], O_RDONLY )) == -1)   return; 

 exit(1);             write(fdwt, &c, 1 ); 

    if(( fdwt = creat( argv[2], 0666 )) == -1)  } 

 exit(1);              } 

1. Process 
Creation 



#include<string.h>    /* parent process executes here */ 

Char string[] = “ hello world”;     close(1);  /* rearrange standard in, out */  

Main()     dup(to_chil[1]);  

{     close(0);  

     int count, I;      dup(to_par[0]);  

     int to_par[2], to_chil[2];    close(to_chil[1]); 

     char buf[256];    close(to_par[0]); 

     pipe(to_par);    close(to_chil[0]); 

     pipe(to_chil);    close(to_par[1]); 

     if ( fork() == 0 )    for( I = 0; I < 15; I++ ) 

     {        { 

           /* child process executes here */            write(1, string, strlen(string)); 

          close(0); /*close old standard input */            read(0, buf, sizeof(buf)); 

          dup(to_chil[0]); /*dup pipe read to standard input*/  } 

          close(1); /*close old standard output */           } 

          dup(to_par[1]); /*dup pipe write to standard input*/ 

          close(to_par[1]);/*close unnecessary pipe descriptors*/ 

          close(to_chil[0]); 

          close(to_par[0]); 

          close(to_chil[1]); 

          for(;;) 

          { 

 if((count = read( 0, buf, sizeof(buf) ) == 0 ) 

      exit(); 

 write(1, buf,count ); 

          } 

     } 

1. Process 
Creation 



SIGNALS  

Inform processes of the occurrence of asynchronous events 

Kill or the kernel may send signals internally 

 

Classified 

• Signals having to do with the termination of a process, sent when a process exits or when a process 
invokes the signal system call with the death of child parameter; 

 

• Signals having to do with process induced exceptions such as when a process accesses an address 
outside its virtual address space, when it attempts to write memory that is read-only ( such as 
program text ), or when it executes a privileged instruction or for various hardware errors; 

 

• Signals having to do with the unrecoverable conditions during a system call, such as running out of 
system resources during exec after the original address space has been released; 

 

2. Signals 



• Signals caused by an unexpected error condition during a system call, such as making a 

nonexistent system call, writing a pipe that has no reader processes, or using an illegal “reference” 

value for the lseek system call. 

 

• Signals originating from a process in user mode, such as when a process wishes to receive a alarm 

signal after a period of time, or when processes send arbitrary signals to each other with the kill 

system call; 

 

• Signals related to terminal interaction such as when a user hangs up a terminal, or when a user 

presses the “break” or “delete” keys on a terminal keyboard; 

 

• Signals for tracing execution of a process 

 

2. Signals 



 

• To send a signal to a process, the kernel sets a bit in the signal field of the process table entry, 
corresponding to the type of signal received. 

 

• If the process is asleep at an interruptible priority, the kernel awakens it. 

 

• The kernel checks for receipt of a signal when a process is about to return from kernel mode to user 
mode and when it enters or leaves the sleep state at suitably low scheduling priority.  

 

• The kernel handles signals only when a process returns from kernel mode to user mode. 

2. Signals 

* How the kernel sends a signal to a process 

* How the process handles a signal 

* How a process controls its reaction signals 



Check  
And 

Handle  
Signals 

Check 
For  
signals 

2. Signals 



Algorithm issig 
 
Input: none 
Output: true, if process received signals that it does not ignore  
           false otherwise 
{ 
     while( received signal field in process table entry not 0 ) 
     { 
 find a signal number sent to the process; 
 if(signal is death of child) 
 { 
      if(ignoring death of child signals) 
       free process table entries of zombie children; 
      else if( not ignoring signal ) 
  return(true); 
 } 
 else if( not ignoring signal ) 
      return(true); 
 turn off signal bit in received signal field in process table; 
     } 
     return(false); 
} 

The algorithm show the kernel executes to determine  
if a process received a signal 

2. Signals 





Handling Signals 

• The kernel handles signals in the context of the process that receives them so a 

process must run to handle signals. 

• Exits on receipt of the signal 

• Ignores the signal 

• Executes a particular(user) function on receipt of the signal 

 

• The syntax for the signal system call 

• Oldfunction = signal( signum, function ); 

• The process will ignore future occurrence of the signal if the parameter value is 1 

• Exit in the kernel on receipt of the signal if its value is 0 

 

• The u area contains a array of signal-handler fields, one for each signal defined in the 

system 

2. Signals 



Algorithm psig      /* handle signals after recognizing their existence */ 

 
Input: none 
Output : none 
{ 
     get signal number set in process table entry; 
     clear signal number in process table entry; 
     if( user specified function to handle the signal ) 
     { 
 get user virtual address of signal catcher stored in u area; 
 /* the next statement has undesirable side effects */ 
 clear u area entry that stored address of signal catcher; 
 modify user level context: 
  artificially create user stack frame to mimic call to signal catcher function; 
 modify system level context: 
  write address of signal catcher into program counter field of  
  user saved register context; 
 return; 
     } 
     if( signal is type that system should dump core image of process ) 
     { 
 create file named “core” in current directory; 
 write contents of user level context to file “core”; 

     } 
     invoke exit algorithm immediately 
} 

Algorithm for Handing Signals 
2. Signals 



If a process receives a signal that is had previously decided to catch, it executes the 
user specified signal handling function immediately when it returns to user mode, 
after the kernel does the following step 

 

• 1. The kernel accesses the user saved register context, finding the program counter and stack pointer 
that it had saved for return to the user process. 

 

• 2. It clears the signal handler field in the u area, setting it to the default state. 

 

• 3. The kernel creates a new stack frame, writing In the values of the program counter and stack pointer 
it had retrieved from the user saved register context and allocating new space, if necessary. The user 
stack looks as if the process had called a user-level function( the signal catcher ) at the point where it 
had made the system call or where the kernel had interrupted it ( before recognition of the signal ) 

 

• 4. The kernel changes the user saved register context: It resets the value for the program counter to 
the address of the signal catcher function and sets the value for the stack pointer to account for the 
growth of the user stack. 

2. Signals 



#include<signal.h> 
Main() 
{ 
     extern catcher(); 
     signal( SIGINT, catcher ); 
     kill( 0, SIGINT ); 
} 
 
Catcher() 
{ 
} 

*** VAX DISASSEMBLER *** 
: 
: 

_catcher() 
 104: 
 106:  ret 
 107:  halt 
_kill() 
 108: 
  # next line traps into kernel 
 10a: chmk    $0x25 
  10c: bgequ   
0x6<0x114> 
 10e: jmp       0x14(pc) 
 114: clrl     r0 
 116: ret 
 

User Stack and kernel Save Area Before and After Receipt of Signal 

before after 

User Stack 
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Receipt of 
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Ret Addr in 
Process (10c) 

User Saved 
Reg Context 

Kernel Context Layer 1 
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New Frame of 
Calling Sequence 
Ret Addr ( 10c ) 

User Stack 
Prior 
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Ret Addr in 
Process (104) 
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2. Signals 



Anomalies  

• When a process handles a signal but before it returns to user mode, the  kernel clears the field in 

the u area 

• If the process wants to handle the signal, it must call the signal system call again 

• A race condition  

• The child process suspends execution for 5 seconds to give the parent process time to execute the nice 

system call and lower its priority. 

• It is possible for the following sequence of events to occur, 

• 1. The child process sends an interrupt signal to parent process. 

• 2. The parent process catches the signal and calls the signal catcher, but the kernel preempts the process and 

switches context before it executes the signal system call again. 

• 3. The child process executes again and sends another interrupt signal to the parent process. 

• 4. The parent process receives the second interrupt signal, but it has not made arrangement to catch the signal. 

When it resumes execution, it exits. 

 

 

2. Signals 



• The problem would be solved if the signal field were not cleared on receipt of the signal 

• Problem : if signals keep arriving and are caught, the user stack could grow out of bounds because 
of the nested calls to the signal catcher.   

• Ignore 

• Problem : loss of information 

• The BSD system allows a process to block and unblock receipt of signal 

 

#include<signal.h> 
Sigcatcher() 
{ 
     printf(“PID %d caught one\n”, getpid() ); 

     signal(SIGINT, sigcatcher ); 
} 
 
Main() 
{ 
     int ppid; 
     signal(SIGINT, sigcatcher ); 
     if( fork() == 0 ) 
     { 
 /* give enough time for both procs to set up */ 
 sleep(5); 
 ppid = getppid(); 
 for(;;) 
      if( kill(ppid, SIGINT ) == -1) 
  exit(); 
     } 
     /* lower priority, greater chance of exhibiting race */ 
     nice(10); 
     for(;;) 
          ; 
} 

2. Signals 



Process Groups 

• The kernel uses the process group ID to identify groups of related processes 
that should receive a common signal for certain events. 

• It saves the group ID in the process table 

• grp= setpgrp(); 

 

Sending Signals from Processes 

• Kill( pid, signum ) 
• If pid is a positive integer, the kernel sends the signal to the process with process 

ID pid. 

• If pid is 0, the kernel sends the signal to all processes in the sender’s process 
group 

• If pid is –1, the kernel sends the signal to all processes whose real user ID equals 
the effective user ID of the sender. If the sending process has effective user ID of 
superuser, the kernel sends the signal to all processes except processes 0 and 1. 

• If pid is a negative integer but not –1, the kernel sends the signal to all processes 
in the process group equal to the absolute value of pid 

2. Signals 



The kernel sends the signal to the 5 “even” process that did not 
reset their process group, but the 5 “odd” process continue to 
loop 

#include<signal.h> 
Main() 
{ 
     register int I; 
      
     setpgrp(); 
     for( I=0; I<10; I++) 
     { 
 if( fork() == 0 ) 
 { 
      /* child proc */ 
     if( I & 1 ) 
  setpgrp(); 
      printf(“pid = %d pgrp = %d\n”, getpid(), getpgrp() ); 

      pause();            /* sys call to suspend execution */ 
 } 
     } 
     kill(0, SIGINT ); 
}  

2. Signals 



PROCESS TERMINATION 

By executing the exit system call 

An exiting process enters the zombie state, relinquishes its resources and 

dismantles its context except for its slot in the process table 

Syntax for the call 

• Exit( status ); 

Startup routine – return from the main function 

The kernel may invoke exit internally for a process on receipt of uncaught 

signals as discussed above 

3. Process termination  



Algorithm exit 
 
Input: return code for parent process 
Output:none 
{ 
     ignore all signals; 
     if( process group leader with associated control terminal ) 
     { 
 send hangup signal to all members of process group; 
 reset process group for all members to 0; 
     } 
     close all open files ( internal version of algorithm close ); 
     release current directory ( algorithm iput ); 
     release current ( changed ) root, if exists ( algorithm iput );  
     free regions, memory associated with process ( algorithm freereg ); 
     write accounting record; 
     make process state zombie  
     assign parent process ID of all child processes to be init process (1); 
      if any children were zombie, send death of child signal to init; 
     send death of child signal signal to parent process; 
     context switch;  
   

3. Process termination  



AWAITING PROCESS TERMINATION 

A process can synchronize its execution with the termination of a child process by 
executing the wait system call 

The syntax for the system call 

• Pid = wait( stat_addr ); 

Processes only wake up on receipt of signal 

 

For any signal except “death of child”, the process will react as described above. However, 
if the signal is “ death of child” the process may respond differently 

• In the default case, it will wake up from its sleep in wait, and sleep invokes algorithm issig to 
check for signals.  

• If the process catches “death of child” signals, the kernel arranges to call the user signal-
handler routine, as it does for other signals 

• If the process ignores “death of child” signals, the kernel restarts the wait loop, free the process 
table slots of zombie children, and searches for more children. 

 

4. Awaiting process termination  



Algorithm wait 
 
Input: address of variable to store status of exiting process 
Output : child ID, child exit code 
{ 
     if( waiting process has no child processes ) 
 return( error ); 
     for(;;)       /* loop until return from inside loop */ 
     { 
 if( waiting process has zombie child ) 
 { 
      pick arbitrary zombie child; 
      add child CPU usage to parent; 
      free child process table entry; 
      return ( child ID, child exit code ); 
     } 
 if( process has no children ) 
      return error; 
 sleep at interruptible priority ( event child process exits ); 
     } 
} 

4. Awaiting process termination  



Exit code in bits 8 to 15 of ret_code and returns the child processID for the wait call 

Thus ret_code equals 256*I 

 

#include<signal.h> 
Main( argc, argv) 
         int argc; 
         char *argv[]; 
{ 
     int I, ret_val, ret_code; 
 
     if( argc >= 1 ) 
 signal( SIGCLD, SIG_IGN );    /* ignore death of child */] 
     for( I = 0; I < 15; I++ ) 
 if( fork() == 0 ) 
 { 
      /* child proc here */ 
     printf(“child proc %x\n”, getpid() ); 

     exit(I); 
 } 
     ret_val = wait( &ret_code ); 
     printf(“wait ret_val %x ret_code %x\n”, ret_val, ret_code ); 

} 

4. Awaiting process termination  



4. Awaiting process termination  



The parent process does not wait for the termination of the child process 

 

If the parent makes the signal call to ignore “death of child” signals, Kernel will release 

the entries for the zombie processes automatically. Otherwise, zombie processes would 

eventually fill the maximum allowed slots of the process table  

#include<signal.h> 
Main(argc, argv) 
{ 
     char buf[256]; 
   
     if( argc != 1 ) 
 signal( SIGCLD, SIG_IGN );   /* ignore death of  children  */ 
     while( read(0, buf, 256 ) ) 
 if( fork() == 0 ) 
 { 
      /* child proc here typically does something with buf  */ 
      exit(0); 
 } 
} 

4. Awaiting process termination  



INVOKING OTHER PROGRAMS 

The exec system call invokes another program, overlaying the memory space of a 

process with a copy of an executable file. 

The syntax for the system call 

• Execve( filename, argv, envp ) 

Process can access their environment via the global variable environ 

The logical format of an executable file 

• 1. The primary header describes how many sections are in the file, the start address for 

process execution, and the magic number, which gives the type of the executable file. 

• 2. Section headers describe each section in the file, giving the section size, the virtual 

addresses the section should occupy when running in the system, and other information. 

• 3. The sections contain the “data”, such as text, that are initially loaded in the process address 

space 

• 4. Miscellaneous sections may contain symbol tables and other data, useful for debugging.   

5. Invoking other programs  



Algorithm exec 
 
Input: (1) file name 
         (2) parameter list 
         (3) environment variables list 
Output: none 
{ 
     get file inode ( algorithm namei ); 
     verify file executable, user has permission to execute; 
      
     read file headers, check that it is a load module; 
      
     copy exec parameters from old address space to system space; 
     for( every region attached to process ) 
 detach all old regions ( algorithm detach); 
     for( every region specified in load module ) 
    { 
 allocate new regions ( algorithm allocreg ); 
 attach the regions ( algorithm attachreg ); 
 load region into memory if appropriate ( algorithm loadreg ); 
     } 
     copy exec parameters into new user stack region; 
     special processing for setuid program, tracing; 
     initialize user register save area for return to user mode; 
     release inode of file ( algorithm iput ); 
} 

5. Invoking other programs  



When the child process is about to invoke the exec call, 

• Its text region consists of the instructions for the program 

• Its data region consists of the string “/bin/date” and “date” 

• Its stack contains the stack frames the process pushed to get the exec call 

Kernel finds the file “/bin/date” 

Kernel then copies the strings  “/bin/date” and “date” to an internal holding area and 
free text, data, stack regions  

It allocates new text, data, stack region 

Kernel reconstructs the original parameter list and puts it in the stack   

Main() 
{ 
     int status; 
     if( fork() == 0 ) 
 execl( “/bin/date”, “date”, 0 ); 

     wait( &status ); 
} 

5. Invoking other programs  



Two advantages for keeping text and data separate: 

• Protection  

• Kernel can set up hardware protection mechanisms to prevent processes from 

overwriting their text space 

 

• Sharing 

• If process cannot write it text region, its text does nor change from the time the 

kernel loads it from the executable file. 

• If several processes execute a file they can, therefore, share one text region, saving 

memory  

5. Invoking other programs  



#include<signal.h> 
Main() 
{ 
     int I, *ip; 
     extern f(), sigcatch(); 
 
     ip = (int *)f;      /* assign ip to address of function f */ 
     for( I = 0; I < 20; I++ ) 
 signal(I, sigcatch); 
     *ip = 1;           /* attempt to overwrite address of f */ 
     prinf(“after assign to ip\n”); 

     f(); 
} 
 
F() 
{ 
} 
 
Sigcatch(n) 
             int n; 
{ 
     printf(“caught sig %d\n”, n ); 

     exit(1); 
} 

5. Invoking other programs  



Algorithm xalloc             /* allocate and initialize text region */ 
Input: inode of executable file 
Output: none 
{ 
     if( executable file does not have separate text region) 
 return; 
     if( text region associated with text of inode) 
     { 
 /* text region already exists…attach to it */ 

 lock region; 
 while( contents of region not ready yet ) 
 { 
      /* manipulation of reference count prevents total removal of the region */ 
      increment region reference count; 
      unlock region; 
      sleep( event contents of region ready); 
      lock region; 
      decrement region reference count; 
 } 
 attach region to process ( algorithm attachreg ); 
 unlock region; 
 return; 
     } 
     /* no such text region exists ---create one */ 
     allocate text region ( algorithm allocreg );    /* region is locked */ 
     if( inode mode has sticky bit set) 
 turn on region sticky flag; 
     attach region to virtual address indicated by inode file header ( algorithm attachreg ); 
     read file text into region ( algorithm loadreg ); 
     change region protection in per process region table to read only;                       unlock 
region   } 

5. Invoking other programs  



Traditional implementations of the system contain a text table that the kernel manipulates 

in the way just described for text regions. 

 

The kernel increments the reference count of the inode associated with the region, 

because the kernel decrements the reference count once in iput at the end of exec   

 

The capability to share text regions allow the kernel to decrease the startup time of an 

execd program by using the stick-bit. 
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The kernel remove the entries for sticky-bit text region 

• 1. If a process opens the file for writing, the write operations will change the contents of the 

file, invalidating the contents of the region. 

• 2. If a process changes the permission modes of the file( chmod) such that the sticky-bit is no 

longer set, the file should not remain in the region table. 

• 3. If a process unlinks the file, no process will able to exec it any more because the file has no 

entry in the file system; hence no new processes will access the file’s region table entry. 

Because there is no need for the text region, the kernel can remove it to free some resource 

• 4. If a process unmounts the file system, the file is no longer accessible and no processes can 

exec it, so the logic of the previous case applies. 

• 5. If the kernel run out of space on the swap device, it attempts to free available space by 

freeing stick-bit regions that are currently unused. Although other processes may need the 

text region soon, the kernel has more immediate needs. 
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7.6 THE USER ID OF A PROCESS 

Real user ID identifies the user who is responsible for the running process 

The effective use ID is used to assign ownership of newly created files, to 

check file access permissions, and to check permission to send signals to 

processes via the kill system call. 

Setuid program is an executable file that has the setuid bit set in its 

permission mode field. – kernel sets the effective user ID fields in the process 

table and u area to the owner ID of the file. 

The syntax for the setuid system call 

• Setuid(uid) 

6. The user ID of a process  



#include<fcntl.h> 
Main() 
{ 
     int uid, euid, fdmjb, fdmaury; 
 
     uid = getuid();                 /* get real UID */ 
     euid = geteuid();             /* get effective UID */ 
     printf( “uid %d euid %d\n”, uid, euid ); 

 
     fdmjb = open(“mjb”, O_RDONLY ); 
     fdmaury = open(“maury”, O_RDONLY ); 
     printf(“fdmjb %d fdmaury %d\n”, fdmjb, fdmaury ); 

 
     setuid(uid); 
     printf(“after setuid(%d): uid %d euid %d\n”, uid, getuid(), geteuid() ); 

 
     fdmjb = open(“mjb”, O_RDONLY ); 
     fdmaury = open(“maury”, O_RONLY); 
     printf(“fdmjb %d fdmaury %d\n”, fdmjb, fdmaury ); 

 
     setuid(euid); 
     printf(“after setuid(%d): uid %d euid %d\n”, uid, getuid(), geteuid() ); 

} 

6. The user ID of a process  



Suppose the executable file produced by compiling the program has owner 

“maury”( usr ID 8319 ), it setuid bit is on, and all users have permission to 

execute it. 

Assume the users “mjb”( user ID 5088 ) 

 

 

 

 

 

 

Login 

mkdir 

User “mjb” 

 
Uid 5088 euid 8319 
Fdmjb –1 fdmaury 3 

Afer setuid(5088): uid 5088 euid 5088 
Fdmjb 4 fdmaury –1 

After setuid(8319): uid 5088 euid 8319 

User “maury” 

 
Uid 8319 euid 8319 
Fdmjb –1 fdmaury 3 

Afer setuid(8319): uid 8319 euid 8319 
Fdmjb -1 fdmaury 4 
After setuid(8319): uid 8319 euid 8319 
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7.7 CHANGING THE SIZE OF A 

PROCESS 

A process may increase or decrease the size of its data region by using the 

brk system call. 

The syntax for the brk system call 

• Brk( endds ); 

• Oldendds =  sbrk( increment );    

Algorithm brk 
Input: new break value 
Output: old break value 
{ 
     lock process data region; 
     if( region size increase ) 
 if( new region size is illegal ) 
 { 
      unlock data region; 
       return( error ); 
 } 
     change region size ( algorithm growreg ); 
     zero out addresses in new data space; 
     unlock process data region;  } 

7. Changing the size of a process  



#include<signal.h> 
Char *cp; 
Int callno; 
 
Main()                                                                   catcher( signo ) 
{                                                                                    int signo; 
     char *sbrk ();                                                    { 
     extern catcher();                                                         callno++; 
                                                                                      printf(“caught sig %d %dth call at 

addr %u 
     signal( SIGSEGV, catcher );                                                           \n”, signo, callno, cp ); 

     cp = sbrk( 0 );                                                             sbrk( 256 );   
     printf(“original brk value %u\n”, cp );                            signal( SIGSEGV, catcher ); 

     for(;;)                                                                } 
 *cp++ = 1; 
}   

Original brk value 140924 
Caught sig 11 1th call at address 141312 
Caught sig 11 2th call at address 141312 
Caught sig 11 3th call at address 143360 
     … ( same address printed out to 10th call ) 

Caught sig 11 10th call at address 143360 
Caught sig 11 11th call at address 145408 
     … ( same address printed out to 18th call ) 

Caught sig 11 1th call at address 145408 
Caught sig 11 1th call at address 145408 
                            . 
                            . 

7. Changing the size of a process  



7.8 THE SHELL 

If the shell recognizes the input string as a built-in 

command, it executes the command internally without 

creating new processes; otherwise, it assumes the 

command is name of an executable file.  

To run a process asynchronously( in the background ), 

sets an internal variable amper 

Nroff –mm bigdocument & 

Nroff –mm bigdocment > output 

Ls –l | wc 

Shell 

 wc 

ls -l 

wait 

exit 

read 

write 

8. The shell  



/* read command line until “end of file” */ 

While( read( stdin, buffer, numberchars ) ) 
{ 
     /* parse command line */ 
     if( /* command line contains & */) 
 amper = 1; 
     else 
 amper = 0; 
     /* for commands not part of the shell command language */ 
     if( fork() == 0 ) 
     { 
 /* redirection of IO ? */ 
 if( /* redirect output */ ) 
 { 
      fd = creat( newfile, fmask ); 
      close(stdout); 
      dup(fd); 
      close(fd); 
      /* stdout is now redirected */ 
 } 
 if( /* piping */ ) 
 { 
      pipe( fildes); 
      if( fork() == 0 ) 
       { 
  /* first component of command line */ 
  close( stdout ); 
  dup( fildes[1]); 
  close( fildes[1]); 
  close( fildes[0]);   /* stdout now goes to pipe */       
      execlp( command1, command1, 0 );   /* child process does command line 
*/    } 

8. The shell  



      /* 2nd command component of command line */ 
      close( stdin ); 
      dup( fildes[0]); 
      close( fildes[0]); 
      close( fildes[1]); 
       /* standard input now comes from pipe  */       
 }  
 execve( command2, command2, 0 ); 
  
     } 
     /* parent continues over here… 

      * waits for child to exit if required 
     */ 
     if( amper == 0 ) 
 retid = wait( &status ); 
} 

8. The shell  



7.9 SYSTEM BOOT AND THE INIT 

PROCESS 

To initialize a system from an inactive state, an administrator goes through a 

“bootstrap” sequence: 

Goal -To get a copy of the operating system into machine memory and to 

start executing it  

On UNIX systems, the bootstrap procedure eventually reads the boot 

block( block 0 ) of disk, and loads it into memory 

After the kernel is loaded in memory, the boot program transfers control to 

the start address of the kernel, the kernel starts running( algorithm start ) 

9. System boot and the init process  



Algorithm start 
Input:none 
Output:none 
{ 
     initialize all kernel data structures; 
     pseudo-mount of root; 
     hand-craft environment of process 0; 
     fork process 1: 
     { 
 /* process 1 in here */ 
 allocate region; 
 attach region to init address space; 
 grow region to accommodate code about to copy in; 
 copy code from kernel space to init user space to exec init; 
 change mode: return from kernel to user mode; 
 /* init never gets here – as result of above change mode, 
  * init exec’s /etc/init and becomes a “normal” user process  

  * with respect to invocation of system calls 
  */  
     } 
     /* proc 0 continues here */ 
     fork kernel processes; 
     /* process 0 invokes the swapper to manage the allocation of 
      * process address space to main memory and swap devices. 
      * This is an infinite loop; process 0 usually sleeps in the 
      * loop unless there is work for it to do. 
      */ 
      execute code for swapper algorithm; 
}   
 

9. System boot and the init process  



It constructs the linked lists of free buffers and inodes, constructs hash queues 

for buffers and inodes, initializes region structures, page table entries 

 

The new process, process 1, running in kernel mode, creates its user-level 

context by allocating a data region and attaching it to its address space. It 

grows the region to its proper size and copies code from kernel address 

space to the new region. 

 

Process 1 is commonly called init because it is responsible for initialization of 

new processes.  

9. System boot and the init process  



Algorithm init          /* init process, process 1 of the system */ 
Input: none 
Output:none 
{ 
     fd = open(“/etc/inittab”, O_RDONLY ); 

     while( line_read( fd, buffer ) ) 
     { 
 /*  read every line of file  */ 
 if( invoked state != buffer state ) 
      continue;      /* loop back to while */ 
 /* state matched */ 
 if( fork() == 0 ) 
 { 
      execl(“process specified in buffer”); 

      exit(); 
 } 
 /* init process does not wait */ 
 /* loop back to while */ 
     } 
 
     while( ( id = wait( (int *)0 ) != -1 ) 
     { 
 /* check here if a spawned child died; 
  * consider respawning it */ 
 /* otherwise, just continue */ 
     } 
} 

9. System boot and the init process  



The init process is a process dispatcher, spawning processes that allow users 

to log in to the system 

 

Init reads the file and, if the state in which it was invoked matches the state 

identifier of a line, creates a process that executes the given program 

specification. 

 

Init executes the wait system call, monitoring the death of its child processes 

and the death of processes “orphaned” by exiting parents. 

 

User process, deamon process, kernel process 

9. System boot and the init process  


