
ADVANCED OPERATING SYSTEMS

 UNIT I INTRODUCTION TO UNIX/LINUX KERNEL

BY

MR.PRASAD SAWANT

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

PREREQUISITES:

1. Working knowledge of C programming.

2. Basic Computer Architecture concepts.

3. Basic algorithms and data structure concepts.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

OUT LINE OF UNIT

1) System Structure

2) User Perspective

3) Assumptions about Hardware

4) Architecture of UNIX Operating System

5) Concepts of Linux Programming

6) Files and the File system

7) Processes

8) Users and Groups

9) Permissions

10) Signals

11) Interprocess Communication

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SYSTEM STRUCTURE

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

USER PERSPECTIVE

The UNIX file system is characterized by

• a hierarchical structure,

• consistent treatment of file data,

• the ability to create and delete files,

• dynamic growth of files,

• the protection of file data,

•the treatment of peripheral devices (such as terminals and

tape units) as files.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SAMPLE FILE SYSTEM TREE

Absolute Path

Relative Path

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

PROCESSING ENVIRONMENT

A program is an executable file, and a process is an instance of

the program in execution .Many process can execute

simultaneously on UNIX system with no logical limit to their

number ,and many instances of a program can exist

simultaneously in the system .

User Perspective

• the fork system call to create a
new process. The new process,
called the child process, gets a 0
return value from fork and
invokes execl

• The execl call overlays the address
space of the child process with the file
"copy“.

• If the execl call succeeds, it never
returns because the process executes
in a new address space meanwhile,
the process that had invoked fork (the
parent) receives a non-0 return from
the call, calls wait:, suspending its
execution until copy finishes, prints
the message "copy done," and exits

Prof.Prasad Sawant ,Assitiant Professor
,Dept. Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USER PERSPECTIVE: SHELL

The shell allows three types of commands.

• First, a command can be an executable file that contains object code

produced by compilation of source code (a C program for example).

• Second, a command can be an executable file that contains a sequence of

shell command lines

• The internal commands make the shell a programming language in

addition to a command interpreter and include commands for looping

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USER PERSPECTIVE :

BUILDING BLOCK PRIMITIVES

redirect I/O

Processes conventionally have access to three files: they read

from their standard input file, write to their standard output file,

and write error messages to their standard error file.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USER PERSPECTIVE :

BUILDING BLOCK PRIMITIVES

redirect I/O

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USER PERSPECTIVE :

BUILDING BLOCK PRIMITIVES

Pipe

• The pipe, a mechanism that allows a stream of data to be
passed between reader and writer processes. Processes can
redirect their standard output to a pipe to be read by other
processes that have redirected their standard input to come
from the pipe.

• The data that the first processes write into the pipe is the input
for the second processes. The second processes could also
redirect their output, and so on, depending on programming
need. Again, the processes need not know what type of file
their standard output is;they work regardless of whether
their standard output is a regular file, a pipe, or a device

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USER PERSPECTIVE :

BUILDING BLOCK PRIMITIVES

Pipe

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

ASSUMPTIONS ABOUT HARDWARE

The execution of user processes on UNIX systems is divided into two levels:

user and kernel. When a process executes a system call, the execution mode of

the process changes from user mode to kernel mode: the operating system

executes and attempts to service the user request, returning an error code if it

fails. Even if the user makes no explicit requests for operating system services,

the operating system still does bookkeeping operations that relate to the user

process, handling interrupts, scheduling processes, managing memory, and so

on. Many machine architectures (and their operating systems) support more

levels than the two outlined here, but the two modes, user and kernel, are

sufficient for UNIX systems.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

ASSUMPTIONS ABOUT HARDWARE

USER VS KERNEL

1. Processes in user mode can access their own instructions and

data but not kernel instructions and data (or those of other

processes). Processes in kernel mode,however, can access

kernel and user addresses.

2. Some machine instructions are privileged and result in an

error when executed in user mode.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

CONCEPTS OF LINUX PROGRAMMING

FILES AND THE FILE SYSTEM

1. The file is the most basic and fundamental abstraction in Linux. Linux

follows the everything-is-a-file

2. In order to be accessed, a file must first be opened. Files can be opened for

reading, writing, or both

3. An open file is referenced via a unique descriptor, a mapping from the

metadata associated with the open file back to the specific file itself. Inside

the Linux kernel, this descriptor is handled by an integer (of the C type int)

called the file descriptor, abbreviated fd.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

FILES AND THE FILESYSTEM

Regular files

What most of us call “files” are what Linux labels regular files. A regular file contains
bytes of data, organized into a linear array called a byte stream. In Linux, no further
organization or formatting is specified for a file.

Directories and links

Accessing a file via its inode number is cumbersome so files are always opened from
user space by a name, not an inode number.

Directories are used to provide the names with which to access files. A directory acts

as a mapping of human-readable names to inode numbers. A name and inode pair is

called a link. The physical on-disk form of this mapping a simple table, a hash, or

Whatever is implemented and managed by the kernel code that supports a given

filesystem. Conceptually, a directory is viewed like any normal file, with the difference

that it contains only a mapping of names to inodes. The kernel directly uses this

mapping to perform name-to-inode resolutions.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

FILES AND THE FILE SYSTEM

Hard links

Conceptually, nothing covered thus far would prevent multiple names

resolving to the same inode. Indeed, this is allowed. When multiple links

map different names to the same inode, we call them hard links.

Hard links allow for complex filesystem structures with multiple

pathnames pointing to the same data. The hard links can be in the same

directory, or in two or more different directories.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

FILES AND THE FILE SYSTEM

Symbolic links

Hard links cannot span filesystems because an inode number is
meaningless outside of the inode’s own filesystem. To allow links
that can span filesystems, and that are a bit simpler and less
transparent, Unix systems also implement symbolic links (often
shortened to symlinks).

Symbolic links look like regular files. A symlink has its own
inode and data chunk, which contains the complete pathname of
the linked-to file. This means symbolic links can point anywhere,
including to files and directories that reside on different
filesystems, and even to files and directories that do not exist. A
symbolic link that points to a nonexistent file is called a broken
link.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

USERS AND GROUPS

Authorization in Linux is provided by users and groups. Each user is associated

with a unique positive integer called the user ID (uid). Each process is in turn

associated with exactly one uid, which identifies the user running the process,

and is called the process’ real uid. Inside the Linux kernel, the uid is the only

concept of a user. Users themselves, however, refer to themselves and other

users through usernames, not numerical values. Usernames and their

corresponding uids are stored in /etc/passwd, and library routines map user-

supplied usernames to the corresponding uids.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

PERMISSIONS

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

SIGNALS

Signals are a mechanism for one-way asynchronous

notifications. A signal may be sent from the kernel to a

process, from a process to another process, or from a

process to itself. Signals typically alert a process to some

event, such as a segmentation fault, or the user pressing

Ctrl-C.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS

Chichwad

INTERPROCESS COMMUNICATION

Allowing processes to exchange information and notify each

other of events is one of an operating system’s most

important jobs.

