
NETWORK PROGRAMMING

 UNIT 3 ELEMENTARY TCP SOCKETS

BY

MR.PRASAD SAWANT

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

ELEMENTARY TCP SOCKETS

1. socket function

2. connect function

3. bind function

4. listen function

5. accept function

6. fork and exec functions

7. Concurrent servers

8. close function

9. getsockname and getpeername functions

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

TCP THREE-WAY HANDSHAKE

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

Socket Functions For Elementary TCP Client/Server

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SOCKET FUNCTION

 To open a socket for performing network I/O

#include <sys/socket.h>
int socket (int family, int type, int protocol);
 returns: nonnegative descriptor if OK, -1 on error

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

SOCKET FUNCTION

Combinations of family and type for the socket function.

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

The Connect() Function (1/3)

• Is used by a client to establish a connection with a server via a 3-way

handshake

 sockfd is a socket descriptor returned by the socket()

function

 servaddr contains the IP address and port number of the

server

 addrlen has the length (in bytes) of the server socket

address structure

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

THE CONNECT() FUNCTION (2/3)

 This function returns only when the connection is established or an error

occurs

 Some possible errors:

 If the client TCP receives no response to its SYN segment,

ETIMEDOUT is returned

 The connection-establishment timer expires after 75 seconds

 The client will resend SYN after 6 seconds later, and again

another 24 seconds later. If no response is received after a total

of 75 seconds, the error is returned

Prof.Prasad Sawant ,Assitiant Professor ,Dept. Of CS PCCCS Chichwad

THE CONNECT() FUNCTION (3/3)

 Hard error: RST received in response to client TCP’s SYN (server not

running)

 returns ECONNREFUSED

 If an ICMP “destination unreachable” is received from an intermediate router,

EHOSTUNREACH or ENETUNREACH is returned. This is a soft error

 Upon receiving the first ICMP message, the client kernel will keep

sending SYNs at the same time intervals as mentioned earlier, until after

75 seconds have elapsed (4.4BSD)

The bind() Function (1/2)

 Assign a local protocol address to a socket

 sockfd is a socket descriptor returned by the socket()

function

 myaddr is a pointer to a protocol-specific address. With

TCP, it has the IP address and port number of the

server

 addrlen has the length (in bytes) of the server socket

address structure
10

The bind() Function (2/2)

 IP address/Port number assignment :

 Wildcard address: INADDR_ANY (IPv4), in6addr_any

(IPv6)

 TCP servers typically bind their well-known port, and

clients let the kernel choose an ephemeral port
11

The listen() Function (1/2)

 Is used by a server to convert an unconnected socket to a passive

socket

 sockfd is a socket descriptor returned by the socket() function

 backlog specifies the maximum number of connections the kernel

should queue for this socket

12

The listen() Function (2/2)

The kernel maintains two queues and the backlog is the sum of these two queues

• An Incomplete Connection Queue, which contains an entry for each SYN that has

arrived from a client for which the server is awaiting completion of the TCP three way

handshakes. These sockets are in the SYN_RECD state

• A Completed Connection Queue which contains an entry for each client with whom

three handshakes has completed. These sockets are in the ESTABLISHED state.

13

THREE-WAY HANDSHAKE AND

THE

TWO QUEUES

The accept() Function (1/2)

 Is called by a server to return a new descriptor, created automatically by the kernel, for

the connected socket

 sockfd is a socket descriptor returned by the socket() function

 cliaddr contains the IP address and port number of the connected client (a value-

result argument)

 addrlen has the length (in bytes) of the returned client socket address structure (a

value-result argument)

 If the completed connection queue is empty, the process is put to sleep

15

The accept() Function (2/2)

 The new socket descriptor returned by accept() is called a connected socket, whereas the

one returned by socket() is called a listening socket

 A given server usually creates only one listening socket. It exists for the lifetime of

the server

 A connected socket is created for each client connection that is accepted. It exists

only for the duration of the connection

 Both cliaddr and addrlen may be set to the NULL pointer, if the server is not interested

in knowing the identity of the client

16

The UNIX fork() Function (1/2)

 Is used in UNIX to create a new process

 fork() is called once, but returns

 Once in the calling process, called the parent

 Once in the newly created process, called the child

 A parent may have more than 1 child process

17

The UNIX fork() Function (2/2)

 All descriptors open in the parent before fork() are shared with the child after

fork()

 The connected socket is then shared between the parent and the child

 Two typical uses of fork() :

 A process makes a copy of itself so that one copy can handle one

operation, and the other copy does something else

 This is typical for network servers

 A process want to execute a new program by calling exec() in the child

process

 User commands in UNIX are typically handled this way

 fork() can be used to implement concurrent servers

18

The UNIX exec() Function (1/3)

 Is used in UNIX to execute a program.

 Is a family name for six like functions virtually doing the same thing, only slightly

different in syntax

 Descriptors open in the process before calling exec() normally remain open

in the new program

19

exec Function (2/3)

int execl (const char *pathname, const char *arg0, /* (char *) 0 */);

int execv (const char *pathname, char *const argv[]);

int execle (const char *pathname, const char *arg0, ... /* (char *)0,

 char *const envp[] */);

int execve (const char *pathname, char *const argv[], char *const envp[]);

int execlp (const char *filename, const char *arg0, ... /* (char *) 0 */);

int execvp (const char *filename, char *const argv[]);

 All return: -1 on error, no return on success

THE EXEC FAMILY (3/3)

 Meaning of different letters :
l : needs a list of arguments

v : needs an argv[] vector (l and v are mutually exclusive)

e : needs an envp[] array

p : needs the PATH variable to find the executable file

close function

• The normal Unix close function is also used to close a socket and terminate a TCP

connection.

•

#include <unistd.h>

int close (int sockfd);

Returns: 0 if OK, -1 on error

getsockname () and getpeername():

These two functions return either the local protocol address associated with a socket

(getsockname) or the foreign protocol address associated with a socket (getpeername).

 #include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *localaddr, socklen_t *addrlen);

int getpeername(int sockfd, struct sockaddr *peeraddr, socklen_t *addrlen);

Both return: 0 if OK, -1 on error

CONCURRENT SERVERS: OUTLINE

pid_t pid;

int listenfd, connfd;

listenfd = Socket (...);

/* fill in socket_in{} with server’s well-known port */

Bind (listenfd, ...);

Listen (listenfd, LISTENQ);

for (; ;){

 connfd = Accept (listenfd, ...); /* probably blocks */

 if ((pid = Fork ()) == 0) {

 Close (listenfd); /* child closes listening socket */

 doit (connfd); /* process the request */

 Close (connfd); /* done with this client */

 exit (0); /* child terminates */

 }

 Close (connfd); /* parent closes connected socket */

}

Server/Client

Connection Status (1/2)

25

Server/Client

Connection Status (2/2)

26

ASSIGNMENT # 3

1. Write a note on socket Function

2. Write a note on connect Function

3. Write a note on bind Function

4. Write a note on listen Function

5. Write a note on accept Function

6. What is purpose of fork () and exec ()

7. Describe close function

8. Describe getsockname and getpeername Functions

9. When Hard error and soft error occurs

10. What is diff. between complete connection queue and incomplete connection queue.

11. Dead line 2nd sept 2013

