

 Page 1

Author

Prof.Prasad M.Sawant

Assistant Professor

Department Of Computer Science

Pratibha College Of Commerce And Computer Studies ,Chichwad Pune

NETWORK PROGRAMMING
UNIT 3 ELEMENTARY TCP SOCKETS

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 2
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

INTRODUCTION :

ELEMENTARY TCP SOCKETS

1. socket function

2. connect function

3. bind function

4. listen function

5. accept function

6. fork and exec functions

7. Concurrent servers

8. close function

9. getsockname and getpeername functions , or complicated terms.

TCP Three-Way Handshake

To understand the connect, accept and close functions and to debug TCP application using

neststat we need to follow the state transition diagram.

 The three way handshake that take place is as follows:

1. The server must be prepared to accept an incoming connection. This is normally done by

calling socket, bind and listen functions and is called passive open.

2. The client issues an active open by calling connect. This causes the client TCP to send

SYN segment to tell the server that the client‘s initial sequence number for the data that

the client will send on that connection. No data is sent with SYN. It contains an IP

header, TCP header and possible TCP options.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 3
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

3. The server acknowledges the client‘s SYN and sends its own SYN and the ACK of the

client‘s SYN in a single segment.

4. The client must ACK the server‘s SYN .

System calls used with sockets:

Socket calls are those functions that provide access to the underlying functionality and utility

routines that help the programmer. A socket can be used by client or by a server, for a stream

transfer (TCP) or datagram (UDP) communication with a specific endpoints address.

Following figure shows a time line of the typical scenario that takes place between client and

server.

First server is started, then sometimes later a client is started that connects to the server. The

client sends a request to the server, the server processes the request, and the server sends back

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 4
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

reply to the client. This continues until the client closes its end of the connection, which sends an

end of file notification to the server. The server then closes its end of the connections and either

terminates or waits for a new connection.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 5
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Socket function:

#include socket (int family, int type, int protocol);

returns negative descriptor if OK & –1 on error.

Arguments specify the protocol family and the protocol or type of service it needs (stream or

datagram). The protocol argument is set to 0 except for raw sockets.

Not all combinations of socket family and type are valid. Following figure shows the valid

combination.

connect Function

The connect function is by a TCP client to establish an active connection with a remote server.

The arguments allow the client to specify the remote end points which includes the remote

machines IP address and protocol port number.

include <sys/socket.h>

int connect (int sockfd, const struct sockaddr * servaddr, socklen_t addrelen)

returns 0 if ok -1 on error.

sockfd is the socket descriptor that was returned by the socket function. The second and third

arguments are a pointer to a socket address structure and its size.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 6
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

In case of TCP socket, the connect() function initiates TCP’s three way handshake. The

function returns only when the connection is established or an error occurs. Different type of

errors are

1. If the client TCP receives no response to its SYN segment, ETIMEDOUT is returned.

This is done after the SYN is sent after, 6sec, 24sec and if no response is received after a total

period of 75 seconds, the error is returned.

2. In case for SYN request, a RST is returned (hard error), this indicates that no process is

waiting for connection on the server. In this case ECONNREFUSED is returned to the client as

soon the RST is received. RST is received when (a) a SYN arrives for a port that has no listening

server (b) when TCP wants to abort an existing connection, (c) when TCP receives a segment

for a connection does not exist.

3. If the SYN elicits an ICMP destination is unreachable from some intermediate router, this is

considered a soft error. The client server saves the message but keeps sending SYN for the time

period of 75 seconds. If no response is received, ICMP error is returned as EHOSTUNREACH

or ENETUNREACH.

bind() Function:

 When a socket is created, it does not have any notion of end points addresses An application

calls bind to specify the local endpoint address for a socket. That is the bind function assigns a

local port and address to a socket.

#include <sys/socket.h>

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

Returns: 0 if OK,-1 on error

The second argument is a pointer to a protocol specific address and the third argument is the

size of this address structure. Server binds their well-known port when they start. (A TCP

client does not bind an IP address to its socket.)

listen Function:

The listen function is called only by TCP server and it performs following functions.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 7
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

The listen function converts an unconnected socket into a passive socket, indicating that the

kernel should accept incoming connection requests directed to this socket. In terms of TCP

transmission diagram the call to listen moves the socket from the CLOSED state to the LISTEN

state.

#include <sys/socket.h>

#int listen (int sockfd, int backlog);

Returns: 0 if OK, -1 on error

 The second argument to this function specifies the maximum number of connections that

the kernel should queue for this socket.

 This function is normally called after both the socket and bind functions and must be

called before calling the accept function.

The kernel maintains two queues and the backlog is the sum of these two queues

 An Incomplete Connection Queue, which contains an entry for each SYN that has

arrived from a client for which the server is awaiting completion of the TCP three way

handshakes. These sockets are in the SYN_RECD state.

 A Completed Connection Queue which contains an entry for each client with whom

three handshakes has completed. These sockets are in the ESTABLISHED state.

 Following figure depicts these two queues for a given listening socket.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 8
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

When a SYN arrives from a client, TCP creates a new entry on the incomplete queue and then

responds with the second segment of the three way handshake. The server‘s SYN with an ACK

of the clients SYN. This entry will remain on the incomplete queue until the third segment of the

three way handshake arrives (the client‘s ACK of the server‘s SYN) or the entry times out. If the

three way hand shake completes normally, the entry moves from the incomplete queue to the

completed queue. When the process calls accept, the first entry on the completed queue is

returned to the process or, if the queue is empty, the process is put to sleep until an entry is

placed onto the completed queue. If the queue are full when a client arrives, TCP ignores the

arriving SYN, it does not send an RST. This is because the condition is considered temporary

and the client TCP will retransmit its SYN with the hope of finding room in the queue.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 9
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

accept Function

accept is called by a TCP server to return the next completed connection from the from of the

completed connection queue. If the completed queue is empty, the process is put to sleep.

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

Returns: non-negative descriptor if OK, -1 on error

 The cliaddr and addrlen arguments are used to return the protocol address

of the connected peer process (the client).

 addrlen is a value-result argument before the call, we set the integer value

pointed to by *addrlen to the size of the socket address structure pointed to

by cliaddr and on return this integer value contains the actual number of

bytes stored by the kernel in the socket address structure. If accept is

successful, its return value is a brand new descriptor that was automatically

created by the kernel. This new descriptor refers to the TCP connection with

the client. When discussing accept we call the first argument to accept the

listening and we call the return value from a accept the connected socket.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 10
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

fork function

fork is the function that enables the Unix to create a new process

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, -1 on error

Typical uses of fork function:

1. A process makes a copy of itself so that one copy can handle one operation while the

other copy does another task. This is normal way of working in a network servers.

2. A process wants to execute another program. Since the only way to create a new process

is by calling fork, the process first calls fork to make a copy of itself, and then one of the

copies(typically the child process) calls exec function to replace itself with a the new

program. This is typical for program such as shells.

3. fork function although called once, it returns twice. It returns once in the calling process

(called the parent) with a return value that is process ID of the newly created process (the

child). It also returns once in the child, with a return value of 0. Hence the return value

tells the process whether it is the parent or the child.

4. The reason fork returns 0 in the child, instead of parent‘s process ID is because a child

has only one parent and it can always obtain the parent‘s process ID by calling getppid A

parent, on the other hand, can have any number of children, and there is no way to obtain

the process Ids of its children. If the parent wants to keep track of the process Ids of all its

children, it must record the return values form fork

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 11
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

exec function

The only way in which an executable program file on disk is executed by Unix is for an existing

process to call one of the six exec functions. exec replaces the current process image with the

new program file and this new program normally starts at the main function. The process ID

does not change. The process that calls the exec is the calling process and the newly executed

program as the new program.

#include <unistd.h>

int execl (const char *pathname, const char *arg0, ... /* (char *) 0 */);

int execv (const char *pathname, char *const argv[]);

int execle (const char *pathname, const char *arg0, ...

/* (char *) 0, char *const envp[] */);

int execve (const char *pathname, char *const argv[], char *const envp[]);

int execlp (const char *filename, const char *arg0, ... /* (char *) 0 */);

int execvp (const char *filename, char *const argv[]);

All six return: -1 on error, no return on success

l : needs a list of arguments

v : needs an argv[] vector (l and v are mutually exclusive)

e : needs an envp[] array

p : needs the PATH variable to find the executable file

The differences in the six exec functions are:

a. whether the program file to execute is specified by a file name or a pathname.

b. Whether the arguments to the new program are listed one by one or reference through an array

of pointers.

c. Whether the environment of the calling process is passed to the new program or whether a new

environment is specified.

The relationship among these six functions is shown in the following figure . Normally only

execve is a system call within the kernal and the other five are library functions that call execve.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 12
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

1. The three functions in the top row specify each argument string as a separate argument to

the exec function, with a null pointer terminating the variable number of arguments. The

three functions in the second row have an argv array, containing pointers to the argument

strings. This argv array must contain a null pointer to specify its end, since a count is not

specified.

2. The two functions in the left column specify a filename argument. This is converted into

a pathname using the current PATH environment variable. If the filename argument to

execlp or execvp contains a slash (/) anywhere in the string, the PATH variable is not

used. The four functions in the right two columns specify a fully qualified pathname

argument.

3. The four functions in the left two columns do not specify an explicit environment pointer.

Instead, the current value of the external variable environ is used for building an

environment list that is passed to the new program. The two functions in the right column

specify an explicit environment list. The envp array of pointers must be terminated by a

null pointer.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 13
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Close function

The normal Unix close function is also used to close a socket and terminate a TCP connection.

#include <unistd.h>

int close (int sockfd);

Returns: 0 if OK, -1 on error

The default action of close with a TCP socket is to mark the socket as closed and return to the

process immediately. The socket descriptor is no longer usable by the process. That is , it cannot

be used as an argument to read or write.

getsockname () and getpeername():

These two functions return either the local protocol address associated with a

socket or the foreign address associated with a socket.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *localaddr, socklen_t *addrlen);

int getpeername(int sockfd, struct sockaddr *peeraddr, socklen_t *addrlen);

Both return: 0 if OK, -1 on error

These functions are required for the following reasons.

1. After connect successfully returns a TCP client that does not call bind(),

getsocketname() returns the local IP address and local port number assigned to the

connection by the kernel

2. After calling bind with a port number of 0, getsockname() returns the local port number

that was assigned

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 14
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

3. When the server is exceed by the process that calls accept(), the only way the server can

obtain the identity of the client is to call getpeername().

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 15
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Concurrent Servers

A server that handles a simple program such as daytime server is a iterative server. But when the

client request can take longer to service, the server should not be tied upto a single client. The

server must be capable of handling multiple clients at the same time. The simplest way to write a

concurrent server under Unix is to fork a child process to handle each client.

Outline for typical concurrent server.

pid_t pid;

int listenfd, connfd;

listenfd = Socket(...);

 /* fill in sockaddr_in{} with server's well-known port */

Bind(listenfd, ...);

Listen(listenfd, LISTENQ);

for (; ;) {

 connfd = Accept (listenfd, ...); /* probably blocks */

 if((pid = Fork()) == 0) {

 Close(listenfd); /* child closes listening socket */

 doit(connfd); /* process the request */

 Close(connfd); /* done with this client */

 exit(0); /* child terminates */

 }

 Close(connfd); /* parent closes connected socket */

}

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 16
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

When a connection is established , accept returns, the server calls fork, and then the child

process services the client (on connfd, the connected socket) and the parent process waits for

another connection (on listenfd, the listening socket). The parent closes the connected socket

since the child handles this new client.

In the above program, the function doit does whatever is required to service the client. When this

functions returns, we explicitly close the connected socket in the child. This is not required since

the next statement calls exit, and part of process termination is closing all open descriptors by the

kernal. Whether to include this explicit call to close or not is a matter of personal programming

taste.

Below fig. shows the status of the client and server while the server is blocked in the call to

accept and the connection request arrives from the client.

Status of client/server before call to accept returns.

Fig.A 1

Immediately after accept returns, we have the scenario shown in Figure B. The connection is

accepted by the kernel and a new socket, connfd, is created. This is a connected socket and data

can now be read and written across the connection.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 17
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Fig.B 1

The next step in the concurrent server is to call fork. Fig c Show the status after fork returns.

Fig.C

Notice that both descriptors, listenfd and connfd, are shared (duplicated) between the parent and

child.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 18
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

This is the desired final state of the sockets. The child is handling the connection with the client

and the parent can call accept again on the listening socket, to handle the next client connection.

Questions

1. Write a note on socket Function

2. Write a note on connect Function

3. Write a note on bind Function

4. Write a note on listen Function

5. Write a note on accept Function

6. What is purpose of fork () and exec ()

7. Describe close function

8. Describe getsockname and getpeername Functions

9. When Hard error and soft error occurs

10. What is diff. between complete connection queue and incomplete connection queue.

UNIT 3 ELEMENTARY TCP SOCKETS

 Page 19
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

11. Explain Concurrent Server

