

 Page 1

Author

Prof.Prasad M.Sawant

Assistant Professor

Department Of Computer Science

Pratibha College Of Commerce And Computer Studies ,Chichwad Pune

NETWORK PROGRAMMING

Unit 4 TCP Client-Server Example

Unit 4 TCP Client-Server Example

 Page 2
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Outline of Unit

1. TCP Echo Server: main Function

2. TCP Echo Server: str_echo Function

3. TCP Echo Client: main Function

4. TCP Echo Client: str_cli Function

5. Normal Startup

6. Normal Termination

7. Connection Abort before accept Returns

8. Termination of Server Process,

9. SIGPIPE Signal

10. Crashing of Server Host,

11. Crashing and Rebooting of Server Host

12. Shutdown of Server Host

Introduction

TCP CLIENT - SERVER COMMUNICATION

Client – Server communication involves reading of text (character or text) from the client and

writing the same into the server and server reading text and client writing the same. Following

picture depicts the same.

Simple Echo client server

1. The client reads a line of text from its standard input and writes the line to the server.

2. The server reads the line from its network input and echoes the line back to the client.

3. The client reads the echoed line and prints it on its standard output.

Functions fgets() and fputs() are from standard I/O library. And writen() and readline() are

function created by the W Richard Stevans (WRS)

Unit 4 TCP Client-Server Example

 Page 3
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

TCP Echo Server: main Function

The communication between client and server is understood by Echo client and Server. The

Following code corresponds to Server side program.

Line 1: It is the header created by the WRS which encapsulates a large number of header that are

required for the functions that are referred.

Line 2 – 3: This the definition of the main() with command line arguments.

Unit 4 TCP Client-Server Example

 Page 4
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Line 5-8 : These are variable declarations of types that are used.

Line 9 : It is the system call to the socket function that returns a descriptor of type int.- in this

case it is named as listenfd. The arguments are family type, stream type and protocol argument –

normally 0)

Line 10: the function bzero() sets the address space to zero.

Line 11-12: Sets the internet socket address to wild card address and the server port to the

number defined in SERV_PORT which is 9877 (specified by WRS). It is an intimation that the

server is ready to accept a connection destined for any local interface in case the system is multi

homed.

Line 14 : bind () function binds the address specified by the address structure to the socket.

Line 15: The socket is converted into listening socket by the call to the listen()function

Line 17-18: The server blocks in the call to accept, waiting for a client connection to complete.

Line 19 – 24: For each client, fork() spawns a child and the child handles the new client. The

child closes the listening socket and the parent closes the connected socket The child then calls

str_echo () to handle the client

TCP Echo Server : str_echo function

Unit 4 TCP Client-Server Example

 Page 5
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Line 6: MAXLINE is specified as constant of 4096 characters

Line 7-11: readline reads the next line from the socket and the line is echoed back to the client

by writen If the client closes the connection, the recept of client‘s FIN causes the child‘s readline

to return 0. This causes the str_echo function to return which terminates the child.

TCP Echo Client : Main Function

Line 9 – 13: A TCP socket is created and an Internal socket address structure is filled in with the

server‘s IP address and port number. We take the server‘s IP address from the command line

argument and the server‘s well known port (SERV_PORT) from the header.

Line 13: The function inet_pton () converts the argument received at the command line from

presentation to numeric value and stores the same at the address specified as the third arguments.

Unit 4 TCP Client-Server Example

 Page 6
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Line 14 –1 5: Connection function establishes the connection with the server. The function

str_cli () than handles the client processing.

TCP Echo Client: str_cli Function

Line 6-7 : fgets reads a line of text and writen sends the line to the server.

Line 8 – 10: readline reads the line echoed back from the server and fputs writes it to the

standard output.

Unit 4 TCP Client-Server Example

 Page 7
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Normal Startup

Although our TCP example is small (about 150 lines of code for the two main functions,

str_echo, str_cli, readline, and writen), it is essential that we understand how the

client and server start, how they end, and most importantly, what happens when

something goes wrong: the client host crashes, the client process crashes, network

connectivity is lost, and so on. Only by understanding these boundary conditions, and

their interaction with the TCP/IP protocols, can we write robust clients and servers that

can handle these conditions.

We first start the server in the background on the host linux*.

linux % tcpserv01 &

[1] 17870

We first start the server in the background on the host linux.

linux % tcpserv01 &

[1] 17870

When the server starts, it calls socket, bind, listen, and accept, blocking in the call to accept.

Before starting the client, we run the netstat program to verify the state of the server's listening

socket.

linux % netstat -a

netstat: This command shows the status of all sockets on the system, which can be lots of

output. We must specify the -a flag to see listening sockets.

The output is what we expect. A socket is in the LISTEN state with a wildcard for the local IP

address and a local port of 9877. netstat prints an asterisk for an IP address of 0 (INADDR_ANY,

*
It is host that on which u log

Unit 4 TCP Client-Server Example

 Page 8
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

the wildcard) or for a port of 0.

 We then start the client on the same host, specifying the server's IP address of 127.0.0.1

(the loopback address).

The client calls socket and connect, the latter causing TCP's three-way handshake to take

place. When the three-way handshake completes, connect returns in the client and accept

returns in the server. The connection is established. The following steps then take place:

1. The client calls str_cli, which will block in the call to fgets, because we have not

typed a line of input yet.

2. When accept returns in the server, it calls fork and the child calls str_echo. This

function calls readline, which calls read, which blocks while waiting for a line to be

sent from the client.

3. The server parent, on the other hand, calls accept again, and blocks while waiting for the

next client connection.

Unit 4 TCP Client-Server Example

 Page 9
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Normal Termination

 At this point, the connection is established and whatever we type to the client is

echoed back.

linux % tcpcli01 127.0.0.1 we showed this line earlier

hello, world we now type this

hello, world and the line is echoed

good bye

good bye

^D Control-D is our terminal EOF character

We type in two lines, each one is echoed, and then we type our terminal EOF

character (Control-D), which terminates the client. If we immediately execute netstat,

we have

linux % netstat -a | grep 9877

tcp 0 0 *:9877 *:* LISTEN

tcp 0 0 localhost:42758 localhost:9877 TIME_WAIT

The client's side of the connection (since the local port is 42758) enters the TIME_WAIT state,

and the listening server is still waiting for another client connection. (This time we pipe the

output of netstat into grep, printing only the lines with our server's well-known port. Doing

this also removes the heading line.)

Unit 4 TCP Client-Server Example

 Page 10
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Connection Abort before accept Returns

similar to the interrupted system call example in the previous section that can cause

accept to return a nonfatal error, in which case we should just call accept again

Receiving an RST for an ESTABLISHED connection before accept is called

Here, the three-way handshake completes, the connection is established, and then the client TCP

sends an RST (reset). On the server side, the connection is queued by its TCP, waiting for the

server process to call accept when the RST arrives. Sometime later, the server process calls

accept.

An easy way to simulate this scenario is to start the server, have it call socket, bind, and listen,

and then go to sleep for a short period of time before calling accept. While the server process is

asleep, start the client and have it call socket and connect. As soon as connect returns, set the

SO_LINGER socket option to generate the RST and terminate.

Unfortunately, what happens to the aborted connection is implementation-dependent Most SVR4

implementations, however, return an error to the process as the return from accept, and the error

depends on the implementation. These SVR4 implementations return an errno of EPROTO

("protocol error"), but POSIX specifies that the return must be ECONNABORTED ("software

caused connection abort") instead. The reason for the POSIX change is that EPROTO is also

returned when some fatal protocol-related events occur on the streams subsystem. Returning the

same error for the nonfatal abort of an established connection by the client makes it impossible

Unit 4 TCP Client-Server Example

 Page 11
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

for the server to know whether to call accept again or not. In the case of the ECONNABORTED

error, the server can ignore the error and just call accept again.

TCP connection Termination:

It takes four segment to terminate a TCP connection as shown below

1. One application calls close, and we say that this end performs the active close. This end‘s

TCP sends FIN segment, which means it is finished sending data.

2. The other end that receives the FIN performs the passive close. The received FIN is

acknowledged by TCP. The FIN is passed to the application as an end of file(after any

data that may already be queued for the application to receive) and the receiver will not

receive any further data from the sender.

3. When the received application closes its socket, the TCP sends FIN.

4. The TCP on the system that receives the FIN acknowledges the FIN.

Unit 4 TCP Client-Server Example

 Page 12
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Termination of Server Process

We will now start our client/server and then kill the server child process. This simulates the

crashing of the server process, so we can see what happens to the client.

The following steps take place

1. We start the server and client and type one line to the client to verify that all is okay. That

line is echoed normally by the server child.

2. We find the process ID of the server child and kill it. As part of process termination, all

open descriptors in the child are closed. This causes a FIN to be sent to the client, and the

client TCP responds with an ACK. This is the first half of the TCP connection

termination.

3. The SIGCHLD signal is sent to the server parent and handled correctly

4. Nothing happens at the client. The client TCP receives the FIN from the server TCP and

responds with an ACK, but the problem is that the client process is blocked in the call to

fgets waiting for a line from the terminal.

5. Running netstat at this point shows the state of the sockets.

SIGPIPE Signal

What happens if the client ignores the error return from readline and writes more data to the

server? This can happen, for example, if the client needs to perform two writes to the server

before reading anything back, with the first write eliciting the RST.

The rule that applies is: When a process writes to a socket that has received an RST, the SIGPIPE

signal is sent to the process. The default action of this signal is to terminate the process, so the

process must catch the signal to avoid being involuntarily terminated.

If the process either catches the signal and returns from the signal handler, or ignores the signal,

the write operation returns EPIPE.

To see what happens with SIGPIPE, we modify our client as shown in Figure

str_cli that calls writen twice.

Unit 4 TCP Client-Server Example

 Page 13
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

7–9 All we have changed is to call writen two times: the first time the first byte of data is

written to the socket, followed by a pause of one second, followed by the remainder of the line.

The intent is for the first writen to elicit the RST and then for the second writen to generate

SIGPIPE.

 If we run the client on our Linux host, we get:

linux % tcpclill 127.0.0.1

hi there we type this line

hi there this is echoed by the server

 here we kill the server child

bye then we type this line

Broken pipe this is printed by the shell

Unit 4 TCP Client-Server Example

 Page 14
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Crashing of Server Host

This scenario will test to see what happens when the server host crashes. To simulate this, we

must run the client and server on different hosts. We then start the server, start the client, type in

a line to the client to verify that the connection is up, disconnect the server host from the

network, and type in another line at the client. This also covers the scenario of the server host

being unreachable when the client sends data (i.e., some intermediate router goes down after the

connection has been established).

The following steps take place

1.When the server host crashes, nothing is sent out on the existing network connections. That

is we are assuming the host crashes, and is not shut down by the operator .

2. We type a line of input to the client, it is written by writen and is sent by the client TCP

as a data segment. The client then blocks in the call to readline waiting for the echoed

reply.

3. If we watch the network with tcpdump (Tcpdump prints out a description of the contents

of packets on a network interface that match the boolean expression), we will see the

client TCP continually retransmit the data segment, trying to receive ACK from the

server. Berkley derived implementations transmit the date segments 12 times, waiting

around 9 minutes before giving up. When the client finally gives up, an error is returned

to the client process. Since the client is blocked in the call to readline, it returns an error.

Assuming the server host had crashed and there were no responses at all to the client‘s

data segments, the error is ETIMEDOUT. But if some intermediate router determine that

the server was unreachable and responded with ICMP destination unreachable message,

then error is either EHOSTUNREACH or ENETUNREACH.

Unit 4 TCP Client-Server Example

 Page 15
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Crashing and Rebooting of Server Host

In this scenario, we will establish a connection between the client and server and then

assume the server host crashes and reboots. In the previous section, the server host was

still down when we sent it data. Here, we will let the server host reboot before sending it

data. The easiest way to simulate this is to establish the connection, disconnect the server

from the network, shut down the server host and then reboot it, and then reconnect the

server host to the network. We do not want the client to see the server host shut down

The following steps take place:

1. We start the server and then the client. We type a line to verify that the connection is

established.

2. The server host crashes and reboots.

3. We type a line of input to the client, which is sent as a TCP data segment to the server

host.

4. When the server host reboots after crashing, its TCP loses all information about

connections that existed before the crash. Therefore, the server TCP responds to the

received data segment from the client with an RST.

5. Our client is blocked in the call to readline when the RST is received, causing readline to

return the error ECONNRESET.

Unit 4 TCP Client-Server Example

 Page 16
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Shutdown of Server Host

When a Unix system is shutdown, the init process normally sends the SIGTERM signal to all

processes (this signal can be caught), waits some fixed amount of time (often between 5 and 20

seconds), and then sends SIGKILL signal (which we cannot catch) to any process still running.

This gives all running processes a short amount of time to clean up and terminate.

If we do not catch SIGTERM and terminate, our server will be terminated by SIGKILL signal.

When the process terminates, all the open descriptors are closed, and we then follow the same

sequence of steps discussed under ―termination of server process‖.

We need to select the select or poll function in the client to have the client detect the termination

of the server process as soon it occurs.

Unit 4 TCP Client-Server Example

 Page 17
© Prof.Prasad Sawant PCCCS Chichwad

 Courtesy Unix Network Programming, Volume 1: The Sockets Networking API W. Richard

Stevens

Exercise

Section A

1. Write and explain TCP Echo Server: main Function

2. Write and explain TCP Echo Server: str_echo Function

3. Write and explain TCP Echo Client: main Function

4. Write and explain TCP Echo Client: str_cli Function

5. Write a note on Connection abort before accept return

6. Write a note on SIGPIPE Signal

Section B

1. Explain Crashing of server Host

2. Explain Crashing and Rebooting of Server Host

3. Explain Shutdown of Server Host

